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Abstract

This Memorandum presents a simple analytical technique for predicting the RF electric field strength
inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to
predict the radio frequency (RF) field strength within a launch vehicle’s fairing from payloads launched
with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload.
The RF field strength is shown to be a function of the surface materials and surface areas. The method
accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of
dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of
all equations and presents examples and data to support the validity of the technique.
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1.0 INTRODUCTION

An analysis technique has been developed to predict the RF field strength, within the Delta fairing, arising
from radio frequency transmission inside the fairing. This analysis is required to evaluate the impact of the
radiation that could be caused by payloads launching with their telemetry transmitters radiating. This
memorandum discusses the development of the analytical technique (mathematically derived in Appendix
B) for predicting the RF electric field strength inside an enclosed volume in which radio frequency radia-
tion occurs. The basic analytical approach is presented in Appendix A and Reference (2).

The analysis provides the ability to account for losses associated with the acoustic blankets which line the
fairing wall. A method for evaluating the RF losses within the acoustic blankets is also provided and
presented in Appendix D. This memorandum provides experimental data which validates the method. The
technique is then used to estimate the RF fields inside the Delta fairing developed by the transmitters on the
KoreaSat and XTE satellites. The computations were performed using the mathmatical functions of the
Microsoft Excel spreadsheets.

The attached appendices provide rigorous derivations of all equations used in the analysis and provide
insight into the technique for acoustic blanket modeling. Thorough study of these appendices can provide
insight into the factors involved. This memorandum addresses the analytical concept, analytical steps,
summary of background and efforts, validation of the analytical model, recommendation for composite
fairing, and conclusions.

2.0 ANALYTICAL CONCEPT

The analysis is based on the technique and hypothesis presented by M. P. Hallett in Appendix A. This
concept (derived from the conservation of energy) is that the field inside the fairing will increase, due to
reflections, until all the energy being supplied by the transmitter is absorbed by the surface areas exposed
to the RF field. Due to the combined reflected and scattered waves, the magnitude of the RF field is
hypothesized to be equivalent to the magnitude of a single incident wave which would dissipate the total
transmitter RF energy in the surface areas. The approach is an application of “Poynting’s theorem” which
states: The power delivered by internal sources (the payload transmitter) to a volume is accounted for by the
power dissipated in the resistance of the media (air) plus the time rate of increase in power stored in the
electric and magnetic fields in the volume plus the power leaving through the closed surface(s).

In our problem the power dissipated in the resistance of the media (air) inside the volume is extremely
small and can be considered to be zero. Also, since the concern is for a stabilized system, the time rate of
increase of the power stored in the electric and magnetic fields in the volume has become zero. Thus the
theorem is reduced to the following: the power supplied by the transmitter is equal to the power leaving
through the closed surface(s).

Mathematically the concept is implemented in Appendix B, equation (B55).

(P)
k=m n
z 24, real{ —*—

2
i=1 n, + 1|

V.
E,
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Where: P is the radiated power,

E (i) is the absolute value of the surface incident wave,

A, 1S the area in square meters of the surface k,

1 is the complex impedance of the surface k material, and

T]:; is the complex impedance of the media (air) inside the enclosure.

This equation shows the field is dependent on the area and impedance of each surface. The impedances of
the surface areas are, in general, a function of frequency for homogeneous materials. The acoustic blanket
covered surface area impedance is very complex being a composite function of the properties and thick-
ness of each material, the order of layers of material, and the impedance of the wall material.

3.0 ANALYTICAL STEPS

The analytical steps which are performed during an analysis are briefly outlined here:

a) Compute the surface area in square meters of each of the different types of materials exposed to
the RF field.

b) Compute the intrinsic RF characteristics of each material exposed to RF field. These character-
istics are usually described as complex numbers. The equations for computing the characteristics
of most materials, including air and aluminum, are provided in Appendix C.

¢) Determine the effective RF impedance of the blanket covered fairing walls. The necessary math-
ematical equation derivation and the methodology used is described in Appendix D.

d) Compute the incident wave’s RF electric field strength using equation (B55) of Appendix B and
the results of the three previous steps.

Appendix A and Reference (1) provide initial explanations of the method and its application to early mod-
els of the fairing. These original explanations and computations did not include, or consider, the affects of
the acoustic blankets.

4.0 SUMMARY OF BACKGROUND AND EFFORTS

Early in the development of the Small Expendable Launch Vehicle (SELVs) service, a need arose to esti-
mate the fields created by RF radiation within the launch vehicle’s fairing. At that time, no analytical tools
were readily available. Therefore, a simple test was petformed using a 1-watt S-band source radiating
inside the fairing, and measuring the resulting field strength at several points inside the fairing. The results
were alarming; with measured field strengths approachirg 100 v/m. Consequently, the SELVs program
does not allow RF radiation within their fairing.

During the launch processing of an Atlas-E mission, a NOAA spacecraft reported experiencing unexpected
noise and interference of instrumentation data during ground testing. The test included RF transmitter
radiation while encapsulated in the fairing. The noise anc. interference vanished when the transmitter was
powered off, indicating that the spacecraft was operating at the edge of its limit. The RF field levels were
not known.

Because of the SELVs data and anecdotal information from the Atlas-E program, we began to question the
validity of past decisions allowing RF radiation within the Medium Expendable Launch Vehicle (MELVs)
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sevice (Delta) fairing. It appeared that these decisions had been based on either free space calculations of
the field strength, or similarity to an earlier (successful) mission. Neither approach could be supported on
a rigorous engineering basis.

We then started development of a method which could be justified by sound engineering principles to
estimate the field strength inside a fairing. Considerable effort was expended examining computationally
intensive approaches using resonant cavity theory, ray tracing theory, etc. The mathematics involved were
extensive and the results questionable, although indicating that fields were high, as expected. Theoreti-
cally, a finite difference program (such as GEMACS) is capable of solving this class of problem. However,
the physical dimensions of the problem resulted in huge matrices that demanded the capabilities of large,
fast computers. An additional shortcoming was that these programs offered little visibility into the factors
involved, such as program implementation limits, or the ability to vary parameters within the model.

The basic technique is outlined in sections 2.0 and 3.0. This technique involves computations that can be
performed within a spreadsheet, yielding results that are reasonably accurate and tend to bound the upper
limit of the field. The reader is cautioned that this technique yields an assumed uniform field strength,
not an exact solution of the field distribution.

The first attempts to model the Delta vehicle, spacecraft, and fairing resulted in prediction of very high
field strengths. Incident RF fields of about 115 volts per meter and a standing wave of about 230 volts per
meter were computed for 1 watt transmitted. Further investigation indicated that the RF window estab-
lished a limiting factor on the buildup of the internal fields. Given the typical size of the current window
(approximately 0.5 m2), our model shows that the field developed by a 1 watt source would be an incident
wave in the order of 30 volts per meter with a possible standing wave to 60 v/m. This is still high, and one
can reasonably question the validity of the result in light of many successful launches without indications
of EMI.

A review of the various items contained within the fairing was then initiated, searching for materials that
might further reduce the fields. We concluded (and later proved by testing) that the acoustic attenuation
blankets which line the fairing are also quite effective absorbers of RF energy. This conclusion then
demanded development of a model for the acoustic blankets, thus completing our model of vehicle, space-
craft, and fairing. This blanket model and vehicle model were subsequently validated by experimental
data, as described in section 5.0 of this memorandum.

5.0 VALIDATION OF THE ANALYTICAL MODEL

The validation of the analytical technique and equations is addressed in four parts. The four parts are
presented in the chronological order that the test data and analysis model developed. The first (section 5.1)
addresses the equations and modeling of the acoustic blankets. The second (section 5.2) addresses the
application of our technique to an aluminum room. The third (section 5.3) deals with analysis and measure-
ments made within actual vehicle fairing enclosures. The fourth part (section 5.4) provides a correlation of
measured RF field data with the results of the analytical technique and equations as applied to a six foot
diameter composite fairing test article.

It should be noted that three different types of acoustic blankets are discussed in this memorandum. The
first is the blanket that has flown in the metal fairing for many years. It is built somewhat like a large pillow
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with fiberglass batting covered all around by a thin cover. This first blanket is discussed in sections 5.1, 5.2,
5.3.1, and 5.3.2. The second acoustic blanket is the original design for the composite fairing. It is a foam in
contact with the fairing wall and having the surface facing the center of the fairing covered by a sheet of
highly reflective aluminized kapton. This second blanket is discussed in section 5.3.3. The third acoustic
blanket, discussed in section 5.4, is a foam in contact with the fairing wall with it’s inner surface (facing the
center of the fairing) covered with a sheet of carbon loaded kapton.

5.1 Acoustic blanket modeling

The computations required by our model were initially frustrated by the presence of dielectric materials in
the blankets. The blankets’ unknown electrical properties and the inability to accurately evaluate their
affect on the fields presented serious problems. The need for an accurate method of evaluating the acoustic
blanket’s affects became the major goal in arriving at a good analytical model.

Initial evaluation of the RF losses in the acoustic blanket began as a series expansion of the reflected and
transmitted waves between the boundaries of the many layers of materials in the blanket and the fairing
wall. This initial method convinced us the blankets were 2 dominant factor in reducing the field strength
inside the fairing. The series expansion technique presented several difficulties which caused an increase
in efforts to define another method. A method to accurately determine the effective impedance of the area
covered by the blankets was sought. Reference (4), Section 7-08, provided the insight to allow the deriva-
tion of the Appendix D equations.

The Appendix D equation (D17) eventually proved to accurately provide the complex impedance for the
blanket covered wall area. The validity of the blanket model is confirmed by classical theory and experi-
mental testing, which demonstrates that the results are reasonably accurate.

5.1.1 Classical Theory

The RF characteristic of homogeneous materials can be computed using the known conductivity, perme-
ability and permitivity of the materials. Many texts provide: simplified equations for their computation and
testify to their validity. Appendix C provides a thorough dzvelopment of the generic equations, which can
be simplified, using appropriate assumptions, to the equations presented in most texts. This testifies to
their theoretical validity.

While the impedance of many materials can be easily compu ted, the equivalent impedance of several layers of
material is not easily computed nor is it a subject treated taoroughly or effectively in text books. The text
typically make a brief reference to transmission line corollaries, present highly simplified equations (with no
explanation of the simplifying assumptions which were used), and then launch into activities with Smith charts
etc. In contrast to this, the rigorous mathematical derivation of equation (D17) in Appendix D indicates it is
theoretically sound. This derivation makes no confusing references to transmission line theory or Smith charts.
This equation defines the complex impedance at the surface of a single layer of material (media 1) of thickness,
T = £, which covers a plate (media 2). The subscript 1, designates the single layer material and subscript 2 is the
plate. Alpha and beta are for the single layer of material (media 1). Successive application of the equation is
required to determine the impedance of several layers of marerials.



a,l
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The equation matches the simplified equation (with the appropriate simplifying assumption, &, = 0) which
is normally presented in text books. This correlation with the texts supports its validity. Other evidence is
also available. Since most texts use transmission line theory as a corollary for analyzing RF transmission
through media, the characteristics from transmission line theory will be used here to demonstrate the valid-
ity of the equation application. The optics world also has corollaries to these characteristics which will not
be discussed here.

5.1.1.1 Half Wavelength Characteristics

One well known impedance characteristic of a transmission line is that a transmission line of length equal
to a multiple half wavelength behaves as if the transmission line is not present. In other words, the load at
the source is the same as the impedance terminating the line. Equation (D17) of Appendix D was used to
calculate the equivalent impedance of fiberglass batting on air and batting on aluminum. Figures 1 and 2
show the results as a function of the batting thickness in wavelengths. At multiples of the half wavelength,
Figure 1 shows the effective impedance to be that of air. Figure 2 shows the effective impedance to be that
of aluminum at the half wavelength points. Both examples demonstrate the effective half wavelength
characteristic expected from its corollary transmission line theory and confirm its validity.

Classical transmission line theory shows that the impedance repeats at half wavelength increments. This
repeating characteristic is demonstrated in the examples shown in Figures 1, 2, 3, 5, and 7.
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Figure 1. Effective impedance of batting on air.
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5,1.1.2 Quarter WaveLength Characteristics

Another characteristic suggested by the transmission line corollary is the impedance characteristics for odd
multiples of lossless quarter wavelength line which is ter minated by the characteristic impedance of the
source. That is, if the line length (batting thickness) is an odd multiple of a quarter wavelength then the
equivalent impedance at the source has an imaginary par which is zero and the real part has a minimum
magnitude. Figure 1 demonstrates this low value for the real part and a zero value for the imaginary part
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at the quarter wavelength intervals.

The quarter wavelength transmission line is also an impedance inverter. This characteristic says that for a
“shorted” load (a perfect conductor), at odd multiplies of quarter wavelength line, the effective impedance
is infinite . Figure 2 is for batting on aluminum and shows that the real and imaginary parts are off scale at
the odd multiple quarter wavelengths. (Actual computations were on the order of millions of ohms for
both the real and imaginary parts). Similarly, the theory says an open circuit would be inverted to an
effective impedance of zero at the quarter wavelength distances. Figure 3 shows the computation for the
batting on an high impedance circuit and shows the expected low (zero) impedance at the quarter wave-
length.

5.1.1.3 Shorted and Opened Transmission Line

The computed impedance terms also follow the classical shapes for the shorted transmission line of vary-
ing length. Figure 4 is a typical figure given in textbooks showing the reactance for a transmission line
terminated in a short circuit as a function of transmission line length. Figure 5 shows the computed reac-
tance for the batting on aluminum which matches the Figure 4 form. Figure 6 (typically in textbooks)
shows the reactance for a transmission line with an open circuit load. Figure 7 shows the computed
reactance for the batting on a plate with a relatively high impedance, which matches the Figure 6 character-
istics.

5.1.1.4 Classical Theory Conclusions on Equation

Each of these computations show that the Appendix D equation (D17) agrees with the corollaries to trans-
mission line classical theory. The equation demonstrates the expected quarter wave inverting characteristic,
the expected half wave transparency, repeating impedance for each half wavelength, and provides the
expected capacitive and inductive nature of the impedance with length (thickness). This correlation indi-
cates the mathematical model (equation (D17) of Appendix D) is valid for the application to the acoustic
blanket installation in the fairing.

A significant point of this discussion is that for any given frequency, one may expect the RF impedance of
the acoustic blanket to vary as a function of the batting thickness. In fact, it will vary between a rather high
loss level (medium impedance, low reflection) defined by the cover sheet material and a rather low loss
level (small impedance or highly reflective) defined by the wall behind the blanket. This leads us to still
another observation. At S-band frequencies, it is theoretically possible for the blankets to become “trans-
parent” due to compression and billowing, leaving the RF window the dominant factor in establishing the
upper boundary of the RF field. This will be discussed in greater detail in sections 5.3.1 and 5.3.2.

5.1.2 Cover Sheet Model Validation

Determination of the characteristics of the blanket’s cover sheets is difficult because it is not a homoge-
neous material. It is made of several layers of different material. Fortunately the composite properties can
be determined experimentally by insertion loss measurements. The measurements provide the complex
dielectric constant and loss tangent at various frequencies. Test data on the carbon loaded cover sheets of
the acoustic blankets was provided by McDonnell Douglas Aerospace (MDA). This data defined the
sheet’s thickness, dielectric constant, loss tangent, insertion loss, phase angle, and conductivity. Appendix
E provides the equations for computing the resistance, impedance, attenuation, and phase shift constants
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for the sheet using the complex dielectric constant and the loss tangent. The Appendix E equations com-
puted comparable results to the test data. These cover sheet computations results were used with equations
(D17) and (D21) of Appendix D to compute the insertion loss of the single cover sheet at frequencies from
2 to 13 GHz. Table 1 provides the computed and the measured values. Reasonable agreement is apparent
at all frequencies. This data indicates the mathematical model for the cover sheet is valid.
Table 1.
Carbon Loaded cover sheet, insertion loss

Measured* Cailculated
Frequency- GHz insertion Loss insertion Loss
2 2.86 2.862
3 2.91 2.908
4 2.95 2.955
5 3.00 3.000
6 3.05 3.047
7 3.09 3.093
8 3.14 3.140
9 3.18 3.187
10 3.23 3.232
11 3.28 3.277
12 3.32 3.324
13 3.37 3.371

*Test data provided by DuPont, Circleville, OH:o MDA; FAX dated 8/24/95.
5.1.3 Blanket on RF Window Model Validation

The sheet model developed in the previous step was then combined (using Appendix D technique) with the
characteristics for a 1.5 inch fiberglass batting, thus providing a model for the 1.5 inch blanket on the RF
window. The model provided insertion loss calculations of about 5.2 dB. Measured data for the insertion
loss of the blanket varied from 3.4 to 4.4 dB. Reasonable comparison with the test data exists. This
correlation provides further confidence that the mathematical model and technique are valid and that a
valid model for the blanket’s performance has been accomplished.

5.1.4 Conclusions on Acoustic Blanket Modeling

Classical theory supports the use of the equation. Its applications to blanket components show agreement
with experimental test data confirming its validity.

5.2 VALIDATION OF THE BASIC TECHNIQUE

The next step in the validation of the technique is to demonstrate the model in an enclosed volume. To
accomplish this an aluminum room was constructed measuring 8 feet by 8 feet by 8 feet. Measurements of
RF field strength inside the room were made while transmitting 1 watt at S-band frequencies. Reference
(2) describes the test and results. These measurements weje compared to the model predictions for three
cases:

1. The room with bare aluminum surface.
2. The room with a small area covered with acoustic blankets.
3. The room with a larger area covered with acoustic blankets.
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Figure 8. Effect of acoustic blanket on maximum fields.

5.2.1 Bare Aluminum Walls

Predictions for the bare aluminum surfaces of the cube room were 254 volts per meter for the incident
wave giving rise to a possible 508 volts per meter for the standing wave. The 254 volts per meter is the
RMS value of the wave incident on the wall to give the power loss. The 508 volts per meter corresponds to
the RMS value of the standing wave inside the enclosure. Figure 8 shows the fields measured at one point
in the room as the frequency of the signal was varied. The hypothesis is that the peak standing wave for a
fixed frequency is very close to the receiving probe and is comparable to the peak field measured with the
frequency varying. Measurements showed levels averaging 85 volts per meter and a maximum standing
wave measurement of 197 volts per meter. The concern is for the maximum field. A very large standing
wave is present with peaks located very close to one another. The average distribution of the measure-
ments is what one would expect with the large standing wave. Subsequent assessments of the antenna
loading characteristics indicated the actual power being radiated could have been reduced to about 0.7
watt. Making the corrections indicated the maximum measured fields could have been as high as 236 volts
per meter. This 236 V/m (or the uncorrected 197 V/m) compare favorably with the predicted incident wave
level of 254 V/m. Another loss factor not accounted for was the dielectric material used for the antenna
stand and the probe stand. The presence of the very high field strength would likely cause appreciable
losses in these stands. The model bounded the measured levels providing an upper limit and demonstrating
a reasonable close agreement with the test data.

5.2.2 Small Area of Blanket-Covered Wall

The batting data and sheet model discussed is section 5.1 were used to define the model for the blanket on
aluminum. This model was then used to predict the RF fields which would result in the 8 foot aluminum
cube room. Slight variations in the thickness of the batting material in the blanket cause significant effects
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on the predicted RF fields inside the room. Figure 9 shows the predicted effect of batting thickness on the
field strength inside the room. Figure 10 shows the effect on the impedance of the covered area and Figure
11 shows the effect on the reflectance of the covered area.

Initial testing with an acoustic blanket used one blanket segient approximately 15 inches wide by 14 feet
long and 3 inches thick. The model predictions for this blanketed area were an incident field of 14 volts per
meter for the most lossy batting thickness and 250 volts per meter for the least lossy batting thickness. The
least loss condition allows the covered wall area to behave as bare aluminum. The predictions indicate
incident fields could be between 14 and 250 volts per meter depending on the installation and manufactur-
ing tolerances of the blanket . This means the standing wave field value could be as high as 500 volts per
meter. The most likely values would be the average of the predicted incident fields as thickness varies
(reference Figure 9) which gives an incident value of 54 and a standing wave of 110 volts per meter. Figure
8 shows the measured values. Test measurements showed average fields of 55 volts per meter with the
maximum of 85 volts per meter. Using the possible correction for antenna loading, the measured fields
could have been at higher values (an average of 66 and maximum of 102 volts per meter). Our model
predicted the possibility of high fields and bounded the upper limit of the problem. The model suggests
that the blankets could have provided a much lower field value if the installed thickness was made smaller.
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Figure 9. Effect of blanket thickness on f.eld strength inside enclosure.
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5.2.3 Large Area of Blanket-Covered Walls

Subsequent testing with blankets covering 42% of the wall surface, measured average field strength of 17
volts per meter, and a maximum level of 33 volts per meter. Antenna loading could indicate the fields
could be as high as 40 volts per meter. This reduction, caused by added blanket area, supports the model’s
use of surface area as a prime factor. The model predicts the incident RF field could be as low as 6 volts
per meter for blanket thickness in the most lossy condition. The model predicts incident fields could still
be as high as 250 volts per meter for the least lossy thickness. The standing wave could be as high as 500
volts per meter. It is believed that the conditions are such that the most likely value of incident RF field
would be an averaging of the effects giving the most likely calculated incident value of 26 volts per meter
and a standing wave of 52 volts per meter. The 33 to 40 volts per meter measured compares very well with
the 26 to 52 volts per meter predicted, further demonstrating the validity of our method.

5.2.4 Aluminum Room Model Conclusions

The model definitely predicts the blankets can be extremely lossy. It also warns that the loss could be
dramatically affected by construction tolerances, installatior;, and billowing during launch. The variations
of loss suggest the possibility of very high fields developing. The model also provides some valuable
insight into the nature and characteristics of the losses. The model established an upper limit which en-
compassed the test results.

5.3 VEHICLE VALIDATION
5.3.1 KoreaSat RF Measurements

The RF fields inside the 9.5 foot aluminum fairing were measured during ground testing of the KoreaSat
mission. The model predictions were compared to the fielcs measured.

The model for the KoreaSat vehicle included:

* Frequency of 12.5 GHz

« Transmitter power of 1.3 watts

 Bare aluminum area of 137.5 square meters

* 3 inch acoustic blanket covered area of 18.5 squar: meters
« 1.5 inch acoustic blanket covered area of 15.5 squére meters
« 1.5 inch blanket covered RF window of 0.5 square meter

Models for the 3 inch and 1.5 inch blankets were developec. The acoustic blankets included the validated
batting data and sheet characteristics. The model predicted incident field value of 3.5 to 6 volts per meter
with blankets installed. The standing wave was expected to be less than 12 volts per meter. The
unpredictability of the blankets’ losses cause the RF window losses to establish an incident wave of 30
volts per meter and a corresponding standing wave of 60 vo ts per meter. Consequently we expected to see
fields as low as 3.5 to 12 volts per meter with a possible high of 60 volts per meter. Testing indicated values
of 3 to 8 volts per meter at various locations within the fairing. The maximum test data was bounded by the
model predictions showing that the data measured on KoreaSat agrees well with the model. The test data
supports the validation of the technique.
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5.3.2 XTE Mission RF Levels

Measurements were made for the XTE mission during ground testing. The model for the XTE vehicle
included:

* Frequency of 2.2875 GHz

* Transmitter power of 1.0 watt

* Bare aluminum area of 128.5 square meters

* 3 inch acoustic blanket covered area of 35 square meters
* 1.5 inch acoustic blanket covered area of 18 square meters
* 1.5 inch blanket covered RF window of 0.5 square meter

The model for the XTE 10 foot fairing and vehicle (including 3 inch acoustic blankets, and 1.5 inch acous-
tic blankets) was developed. The acoustic blankets included the validated battin g data and sheet characteristics.
The model predicted an incident field value ranging from 2.2 to 5 volts per meter for the blanket installa-
tion. The standing wave was expected to be less than 10 volts per meter but the unpredictability of the
blankets defaults to the RF window established upper boundary of 30 volts per meter. The bulk of the
measurements on XTE were below 5 volts per meter, and a few measurements were about 9 volts per
meter. One point measured 20.4 volts per meter. This high point was at some distance from the antenna
and demonstrates the magnitude of the standing wave and the unpredictability of the blanket losses.

5.3.3 Composite Fairing Testing

Two configurations for the composite fairing were tested. One configuration was a fairing with no acoustic
blankets installed which was also used as the structural test article. This configuration is referred to here as
the “bare” composite fairing test. The second configuration had 3-inch acoustic blankets installed and was
used for the acoustic testing. The second configuration is referred to in this memorandum as the composite
fairing with acoustic blankets test. The acoustic blankets were a different design from those discussed in
the previous section and were not expected to be lossy.

5.3.3.1 Bare Composite Fairing Test

A one watt source was radiated (using a horn directional antenna) at 2 to 13 GHz and RF field measure-
ments made. The tests were performed with the radiating antenna located in the center of the fairing at
approximately 2/3 the fairing height. The radiating antenna was pointed up toward the nose of the fairing.
The test probe was at three locations. During test 1, it’s location was about 30 inches from the side wall, at
172 the fairing height. During test 2, the test probe was located about 3 feet from the side wall at about 2/3
the fairing height. For tests 3, the test probe was located approximately 2 feet from the side wall at about 2/
3 the height of the fairing. Table 2 presents a summary of the RF field strengths measured.

Table 2.
RF Fields Measured in the Bare Composite Fairing.

©- .Position [ " "Test1- ]  Test2 - : /| - Test3
S _ 1 w~oltimeter = | -volts/meter - |: volts/meter
Maximum 39.0 39.0 63
Minimum 6.6 2.2 7.9
Average 20.0 14.0 25.0
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The analytical model for the bare composite fairing configuration, predicted an incident wave of 39 volts
per meter and a corresponding standing wave of 78 volts per meter. This test provides reasonable correla-
tion with the analytical model predictions.

5.3.3.2 Composite Fairing with Acoustic Blankets Test

A one watt source was radiated (using a horn directional antenna) at 2 to 13 Ghz and RF field measure-
ments made. Tests were performed with the radiating antenna at three orientation positions and the test
probe at two locations. During test 1 and 2, the transmit antenna was pointed toward the top of the fairing
and was located at about 40 inches from the side wall at approximatel mid-height of the fairing. For test 3
the radiating antenna was also pointed up, but was located at about 1/4th the fairing height. The test 3
location for the radiating antenna was about 40 inches from the side wall, at 1/4 the fairing height , but
pointed toward the closest fairing wall. During test 1, the test probe was located about 1 foot from the side
wall at about 1/3 the fairing height. For tests 2,3, and 4, the test probe was located approximately three feet
from the side wall at about 2/3 the height of the fairing. Table 3 presents a summary of the RF field
strengths measured.

Table 3.
RF fields Measured in the Composite Fairing With 62.4% Blanket Coverage.
“Position |  Test1 |  Test2 Test3 ~ Test4
1 volts/meter volts/meter volts/meter volts/meter -
Maximum 43.8 52.8 53.2 53.6
Minimum 7.8 13.4 7.8 12.4
Average 22.8 28.8 25.3 29.8

These measurements confirmed predictions that the blanke:s were not lossy and would probably result in
an increase of field over the bare fairing. The data indicates in increase in field strength when compared to
the data in Table 2. The analytical model for this configuration, predicted an incident wave of 29 volts per
meter and a corresponding standing wave of 58 volts per meter. This test provides reasonable correlation
with the analytical model predictions.

5.3.4 Vehicle Validation Conclusions

The analytical model provides reasonable agreement with he tests performed and consistently predicts a
conservative upper bound of the field.

5.4 VALIDATION USING A 6-FOOT DIAMETER COMPOSITE FAIRING TEST ARTICLE.

The previously discussed testing tended to support the use of our technique. Each of these previous tests,
however, had factors which introduced some level of uncertainty in the results. The sources of uncertain-
ties included unstable walls (aluminum room), actual installed blanket thickness, surfaces areas of unknown
materials and RF properties (spacecraft surfaces), limited access, limited radiation frequency, and the radi-
ated RF power. A development six foot diameter composite fairing was selected as a test article to allow
more exacting and thorough testing with no interference with vehicle development, production, or process-
ing schedule.
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We performed the calculations to estimate the field strength that a 1 watt transmitter would create by
radiating within the envelope of the six foot diameter fairing. These calculations were carried out for two
different boundary conditions. First, for a fairing with bare walls. Second, for a fairing with blanketed
walls. We then performed a series of tests to compare our calculated estimates with actual measured values
for the two boundary conditions. The results of these tests showed that our technique can provide useful
estimates of the resulting fields within the fairing volume. The reader is once again cautioned that our
technique yields an assumed uniform field strength, not an exact solution of the field distribution.

We intend to use our technique to estimate the field strength created when operating a transmitter within a
fairing envelope. This information will then be used to evaluate the electromagnetic interference margins
for equipment located within the volume.

5.4.1 The Analysis

We begin the analysis by determining the interior surface area of the test fairing. The surface area of the

interior wall was determined to be approximately 27 m?, with an approximate 3 m? aluminum aft closure.
Figure 12 illustrates the fairing configuration and the construction of the blanket.

Figure 12. Test Fairing and Blanket Configuration.
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Next, we determined the electrical properties of the materials. The properties of some of these materials
were readily available in handbooks, other materials required laboratory measurement.

We employed a computer spreadsheet to organize our data and to perform the many calculations required
to complete the analysis. We found the spreadsheet’s “built in” capability to perform mathematical opera-
tions using complex numbers to be quite helpful. However this capability is not mandatory; the spreadsheet
can be set up in a classical manner to perform the required operations. We strongly recommend that the
user spend some time reviewing the mathematics of complex numbers before attempting to set up an
analysis such as this. A Pascal program to perform the problem setup and analysis is being developed.
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The various material properties and required physical constants are summarized in Table 4. It should be
noted that the e’ and e” (the real and imaginary components of permittivity) have a strong frequency
dependence in some materials. The cover sheet is an example of this, as it is designed to be a lossy dielec-
tric. Therefore, the data in the Table 4 is valid only at the noted frequency of 2.2 GHz. For our analysis, the
cover sheet permitivity was measured over a wide frequency range. We then developed a curve fit function
within the spreadsheet to evaluate e’ and €” as a function of frequency. In the case of foam, the permittivity
was measured and found to be essentially constant across a wide frequency band. For the Composite and
Aluminum materials, the e” was computed using Appendix E equation E6, based on conductivity values.
The conductivity value used for aluminum is a handbook value, while that of the composite material is a
value estimated by the authors.

Table 4.
RF Properties of Materials in Construction of the Fairing and Blankets (Valid at 2.2 Ghz)

Material ‘ Alr Cover Melamine | Composite {Aluminum
- :Sheet s '

Mu (permeability) | 1.26E-06 | 1.26E-06 1.256E-06 | 1.26E-06 | 1.26E-06
epsilon zero 8 85E-12 | 8.85E-12 | 8.85E-12 | 8.85E-12 | 8.85E-12
conductivity 0.00E+00 | 6.68E+01 | 1.22E-04 | 3.00E+05 |3.72E+07
(mho/m)
e’ 1.00E+00 | 7.33E+01 |1.02E+00| 1.00E+00 [1.00E+00
e" 0.00E+00 | 5.46E+02 | 1.00E-03 | 2.45E+06 |3.04E+08
0.5 arc tan(e"/e")=| 0.00E+00 | 7.19E-01 4 92E04 | 7.85E-01 | 7.85E-01

The next step in the analysis is to compute the propagation constant, attenuation constant and phase con-
stant using Appendix E equations E13, E14, E17 & E18. The intrinsic impedance of each of the materials
is also computed using Appendix E equations E9, E10 & E11. As discussed earlier, these computations
were set up and performed in a spreadsheet. The results are summarized in Table 5.

Table 5.
RF Characteristics of Materials Used in Fairing and Blanket. (Valid at 2.2 GHz)

~ TMatenal __ | _AIr
gamma 4.62E+01 | 1.08E+03 |4.65E+01] 7.23E+04 |8.05E+05
alpha 0.00E+00 | 7.13E+02 | 2.29E-02 | 5.11E+04 | 5.69E+05
beta 4.62E+01 | B.15E+02 |4.65E+01 | 5.11E+04 |5.69E+05
Inl 3.776+02 | 1.61E+01 |3.74E+02 | 2.41E01 | 2.16E-02
n_real 3.77E+02 | 1.21E+01 |3.74E+02 | 1.70E01 | 153E-02
n_imag 0.00E+00 | 1.06E+01 | 1.64E-01 | 1.70E01 | 153E-02

The next step was to determine the RF fields that would be developed in the fairing if a 1 watt transmitter
was to radiate within the fairing envelope. Our first set of boundary conditions assumed an unblanketed
fairing (bare composite walls). We can directly apply Apps ndix B equation B55 (using the impedance of
the composite walls) to determine the anticipated field. The: results are shown in Figure 13 below.
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Figure 13. Predicted RMS Value of Standing Wave in Bare Fairing.

Two intermediate steps in the analysis were performed to enhance understanding the effects of the blanket
materials on the RF fields and the performance of the blanket as a system. It will be shown that the system
performance is much more than the sum of their parts. Neither the foam alone or the coversheet alone is
adequate to reduce the field.

One intermediate step evaluated the RF fields with the cover sheet material lining the fairing wall. In other
words, no foam was present and the cover sheet (0.0015 inches thick) was in contact with the wall. The
equivalent load impedance of the sheet covered wall was computed (using the cover sheet and composite
material RF properties in Appendix D equation D17) before proceeding to Appendix B equation B55. This
configuration resulted in RF fields essentially the same as the bare fairing. Figure 13 also represents the
fields that result from the fairing with only the cover sheet installed.

The second intermediate step in our analysis, was to determine the RF field that would result inside the test
fairing when lined with only the 3 inch thick Melamine foam (no cover sheet installed). The foam is
installed against the composite walls of the fairing. The equivalent load impedance of the foam covered
wall must be computed before proceeding to Appendix B equation B55. The equivalent load impedance of
the blanketed wall was computed using the foam and composite material RF properties in Appendix D
equation D17. The resulting fields are shown in Figure 14.
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Figure 14. Predicted RMS Value of the Standing Wave, Fairing with Foam Only.

It is observed by comparing Figures 13 and 14, that the shape and trend of the foam only curve is much the
same as the bare fairing. However, the RF fields are reduced by about 6 dB from the bare fairing. This
reduction of the RF fields is not readily expected since the properties of the foam are very close to those of
air. This is one example of how a relatively small loss factor can have a large effect on overall system
performance. It is also apparent, however, that the fields are still unacceptably high. Additional reduction
of the field is needed.

The final step in our analysis, was to determine the field that would be created by a 1 watt transmitter
radiating inside a blanketed (foam and coversheet) fairing. The results for the coversheet only and the foam
only analyses seems to imply that the total blanket will not be effective. We will see that this impression is
incorrect. In this blanketed fairing case, the equivalent load impedance of the blanketed wall must be
computed before proceeding to Appendix B equation B55. The equivalent load impedance of the blanketed
wall was computed by successive applications of Appendix - equation D17, working from the wall toward
the fairing center line through the layer of Melamine, then hrough the cover sheet. The blanket consisted
of a 3" layer of Melamine foam with a .0015" thick cover sh:et. The blanket is installed with the Melamine
against the composite walls of the fairing and the cover shex t facing the interior volume of the fairing. The
results of the field strength calculations are shown in Figure 15.
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Figure 15. Predicted RMS Value of Standing Wave with the Fairing Blanket Installed.

The results show uniformly separated RF field peaks with values corresponding to the “foam only” instal-
lation of Figure 14. The RF field at frequencies between the peaks are drastically reduced to relatively low
levels. This dramatic reduction is used to provide equipment protection for relatively wide frequency
bands centered about the expected radiating frequency.

Further examination of the field strength behavior in a blanketed fairing reveals that the frequencies at
which the high level “spikes” occur are a function the spacing between the cover sheet and the wall (in
other words, a function of the foam thickness). Such behavior is implicit in Appendix D equation D17, but
it is not obvious until the data is plotted with respect to frequency. In simplistic terms; at certain frequen-
cies (determined primarily by the foam thickness), the cover sheet becomes “transparent”. The RF energy
must then be absorbed by the Melamine/wall system instead of the more lossy cover sheet thus higher RF
fields are necessary to dissipate the RF power. One can examine this “spiking” behavior in more detail
(using Appendix D equations D21 and D22) to further evaluate the field levels and power dissipated within
the blanket/wall system.

At this point, one could reasonably ask where the energy is being dissipated. The energy loss distribution
for the blanketed fairing configuration is shown in Figure 16 for frequencies about the “spike” at about 2
GHz.
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Figure 16. Distribution of Power within the Blanket-wall System.

The Figure 16 shows that the energy at the low RF field frequencies is primarily dissipated within the
coversheet of the blanket with very little being absorbed by the foam or the Fairing wall. The opposite
is true for the frequencies corresponding to the peak field values. Essentially no energy is lost in the
coversheet while the bulk is going to the foam with a significant dissipation within the fairing wall.

There are some additional interesting facts to be observed when we review the results of the analyses
we have just completed. First, our analysis predicts that a 1 watt transmitter is capable of developing
quite high RF fields within a bare fairing envelope. Second, it is possible to design a blanket system
that can provide significant field strength reductions over specific frequency bands.

As one further examines the theoretical behavior of the system, it is possible to postulate several ap-
proaches that might improve the RF absorption capabilities of the blanket system. Some of these will
be discussed later.

5.4.2 Test Results and Comparison to Analytical Predictions.

Once our analysis was complete, we were ready to attempt to validate our technique by measuring the
actual fields created by a 1 watt RF source installed within our test fairing. We hoped that our analytical
results would “envelope” the actual test data, thereby validating a tool that could then be used to

estimate field levels in an enclosed environment.

Our first tests were conducted inside a bare composite fairing. Typical results are shown in Figure 17.
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Figure 17. Test Data Versus Analytical Prediction for the Bare Fairing.

Similarly, a second series of tests were performed in a blanketed fairing. Representative results are
shown in Figure 18.

Test Data vs Prediction
Blanketed Fairing
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Figure 18. Test Data Versus Analytical Prediction for Blanketed Fairing.
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5.4.3 Composite Fairing Test Article Conclusions.

As stated previously, the data is representative of a large number of tests performed with varying
antenna locations (both transmit and field level sensor). While the data sets were expectedly “noisy”,
the test results confirmed the general characteristics predicted by our analytical approach. That is, the
fields developed inside a bare fairing were quite high (peaks approaching 200 V/m from a 1 watt
source). In addition, we confirmed the general behavior of the blanket system and its ability to provide
significant reduction to the RF fields in specific frequency bands. The test data also showed the ex-
pected field “peaking” resulting from the spacing between the cover sheet and the wall. It was also
shown that (as predicted) the field levels developed inside a bare composite fairing were quite similar
to those developed inside a metallic fairing. Essentially the composite fairing exhibits RF behavior
much the same as a metallic fairing. It is highly reflective to RF energy and provides significant attenu-
ation from one side of its skin to the other.

Our analytic approach assumes an isotropic source and good scattering, thus assuring the development
of a uniform field within the enclosed volume. This is seldom the case in the real world, especially
when the volume begins to be filled with a payload. A few exploratory tests were performed with a
simulated payload in the fairing volume, and as might be expected, some portions of the volume were
“shadowed” or “choked off.” But in general, the overall field levels remained enveloped by our predic-
tions. It is obvious that significant shadowing and blockage would require re-assessment of the absorbing
area. It is probable that an engineering judgment would be required, to arrive at a reduced effective area
of the absorbing blanket.

Mil-Std-1541A requires an inter system EMI safety margin of at least 6 dB for tested systems (12 dB
for systems qualified solely by analysis). The authors certainly concur that the inter system safety
margin for tested systems should be at least 6 dB if our technique is used to estimate the field level. We
have observed test to test variation in measured field levels approaching 3 dB, and recommend caution
in approaching demonstrated safety margins. Although our analysis provides a conservative envelope
for the predicted field levels, approaching a 6 dB safety margin should be done with great care.

As was mentioned earlier, our analysis indicated several approaches that might improve the effective-
ness of the blanket system. One obvious approach is to adjust the blanket thickness such that the
maximum loss is coincident with the frequency of operatior.

A second approach would be to use blankets of two or more thickness. Here the objective is to have one
blanket provide at least some loss when the other is at its minimum. We tested a configuration that
employed two different thickness blankets in the hope of creating a more uniform field level, with
lower “spikes”. While the results from this test showed a general tendency to behave as predicted, the
overall improvement was less than expected. We believe the poor performance was due to less than
optimum scattering of the incident field. The transmitting antenna used for this test was highly direc-
tive. Hence the bulk of the incident power was directed at o1ie blanket or the other causing that blanket
to dominate the system response. These results point out that if a highly directive antenna is used to
radiate within the fairing, care must be taken to evaluate t1e effective surface area of the absorbing
material.

A third approach towards improving the blanket effectiveness is suggested when the power absorption
behavior of the blanket is examined. If we were to replace the Melamine with a different (more lossy)
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dielectric material, the blanket system would exhibit higher losses in the frequency range where the
cover sheet becomes “transparent.” We do not know if such a material exists, or if one could be found
that is compatible with its intended use (weight, cleanliness, etc.). This approach is simply suggested
by the mathematics of the problem.

6.0 RECOMMENDATION FOR COMPOSITE FAIRING

The technique described in Appendix D provides insight into the acoustic blankets’ RF performance.
This leads to some recommendations to ensure the composite fairing and acoustic blanket designs
provide an RF environment no worse than the Delta vehicle aluminum fairing and blankets.

6.1 REPLACE ALUMINIZED KAPTON

The layer of aluminum deposited on the kapton cover sheet is too thick, dramatically increasing the
reflection and decreasing the loss. The aluminized kapton sheet should be replaced with a carbon
loaded kapton (or equivalent) which has a reduced conductivity and reflection. This change alone can
substantially reduce the RF fields.

6.2 STABILIZE THE THICKNESS OF THE BLANKET

The thickness of the blanket should not change easily since the changes perturbate the losses within
the blanket. The metal fairing blankets are subject to easy changes in thickness due to installation
method, venting, vibration, air flow, etc. The thickness changes cause the losses in the blanket to
fluctuate greatly and to be unpredictable. The melamine foam is flexible but it is also much more stable
than the batting material so its loss should be more predictable.

6.3 SELECT PROPER COMBINATION OF BLANKET THICKNESS

One of the most obvious recommendations is to provide some blankets of thickness less than a half
wavelength. Three-inch blankets in the cylindrical section combined with 3.25 or 3.5-inch blankets in
the nose section can reduce the RF field ‘peaking’ effects at certain frequencies. Blanket thickness
should avoid even number multiples or divisions of the RF wavelength. This will ensure a lossy
blanket area that will limit the RF field to a relatively low value at a wide band of frequencies.

6.4 MAKE THE MELAMINE FOAM CONDUCTIVE

Implementation of the proper conductivity for the foam will dramatically reduce the RF fields at virtu-
ally all frequencies. The conductivity can be increased by mixing graphite, carbon, or other conductive
powder with the melamine.

The design of a blanket that would give large loss when installed on aluminum should also provide
large loss for the composite fairing since the composite is more lossy than aluminum. The analysis
technique described in Appendix D can be used to perform trade studies to ensure a good blanket
design. The following activities will ensure that design:
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1. Determine the thickness, dielectric constant and loss tangent for the candidate cover sheets
for the acoustic blankets. Application of Appendices D and E equations should allow for the
design and selection of an appropriately lossy cover material.

2. Determine the dielectric constant and loss tangent for the proposed foam material for the
blankets. Use the Appendices D and E technique to establish the proper material and thick-
ness.

3. Use the technique of Appendices B and D to compate the fairing RF fields for each candidate
blanket design.

The technique of Appendix E can be used to determine the RF characteristics of the composite fairing
wall. Use the equipment which measured the blanket cover sheet properties to determine the complex
dielectric constant and loss tangent for the various layers of the composite fairing wall, then use Ap-
pendix E to compute the effective RF impedance for bare composite wall surface.

7.0 CONCLUSIONS

The analytical technique presented in Appendix B is shown to be relatively simple. The greatest effort
is in determining the surface areas and type of materials involved. The equations presented for the
complex values of media characteristic wave impedance and the magnitude of the incident wave are
exact and simple. The model can account for the presence of items comparable to the acoustic blankets
by using the technique of Appendix D to define the effective surface impedance. The simplicity of the
concept and its computation suggests it is a viable technique for first order quantification of the RF
fields inside any enclosure. The value is an equivalent wave which would dissipate the transmitted
power into the surface areas. In the real world, large standing waves exist which are approximately
twice the magnitude of the equivalent incident wave.

The technique can provide a methodology for evaluating various blanket designs for the composite
fairing and could be used to establish the RF characteristics of the fairing composite surface.
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APPENDIX A

A Method for the Estimation of the Field Strength of
Electromagnetic Waves Inside a Volume Bounded
by a Conductive Surface

by
M.P. Hallett
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Recent requests from a number of spacecraft projects to operate their transmitters during launch processing
and throughout the launch itself, has led us to investigate the nature of the RF field created within the
fairing envelope under such situations. This analysis was further prompted by data obtained from another
OLS project, indicating that significant amplification of the electromagnetic fields occur when a transmit-
ter radiates inside a conductive enclosure such as a payload fairing.

In an attempt to establish some limits on the field strengths expzrienced, first consider the case of no fairing
at all. For equipment in view of an isotropic transmitting antenna, a reasonable estimate of the field
strength will be given by the free space radiation formula:

¢ =P /Am’ (A1)
Where: ¢ = Power density (watts / m?2),
P = Transmitter power (watts), and
r = Distance to the source (m).
and E=.377¢ (A2)
Where: E = Electric field strength (volts/m), and

377 = impedance of free space.

If necessary, these equations can be modified to account for antenna gain and directivity, transmission
losses, etc. See any good text on antenna theory, such as “Antennas” by John Kraus (McGraw-Hill, 1950)
for a complete treatment of this subject. These equations provide a reasonable estimate of the lower bound
on the field strength at any given point. To get some idea of the magnitudes involved, a quick computation
for a point 1 meter away from a 1 watt isotropic source (in free space) gives us a power density of .079
watts / m? and an electric field strength of 5.5 volts/m.

If the entire system is enclosed within a conductive surface (payload fairing), one intuitively expects the
field strengths to increase. Instead of radiating out into free sp-ace, the transmitter power is trapped within
the enclosed volume. The power is reflected back and forth from the conductive surfaces enclosing the
volume, with higher conductivity equating to greater reflectior. The energy contained within the fields will
continue to build up until the power lost into the enclosing surface comes into balance with the power
supplied by the source. This is a rather simplistic restatement >f the Poynting Theorem. In this model, the
only mechanism for energy loss is through ohmic heating in tke enclosing walls or other objects contained
within the enclosing surface. In Ramo and Whinnery’s “Fi:lds and Waves in Modern Radio” (Wiley,
1959) 241, it is shown that the average power loss in a plane conductor can be directly computed, knowing
the strength of the incident field and the surface resistance of the conductor using the following equation:

2

L= (]'/2)Rs|‘,|2 = (1/2)Rs Hinc ) (A3)
Where: W, = Average power lost in conductor per unit area,
J Surface current (amps / meter),

R = Surface resistance (ohms), and
H, = Incident magnetic field intensity (amfs / meter).

%
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The surface resistance is frequency dependent (skin effect) and may be computed given the frequency of
interest and the conductivity of the material. For aluminum, Rg = 3.26E-7 ﬁ .

It should also be noted that for a perfect conductor, the conductivity becomes infinite and the surface
resistance goes to zero. For aluminum at S band, frequency f = 2.2E9, we compute RS = .015 ohms. To be
precise, this is just the real part of the surface resistance. There is an imaginary component that can be
computed as well. A full treatment of skin effect and surface resistance can be found in Ramo and Whinnery
(Op. cit.) or Magnusson’s “Transmission Lines and Wave Propagation” (Allyn and Bacon, 1965).

Inspecting the power loss equation, we see that to sustain a given power loss, the incident field must
increase as the surface resistance gets smaller. In the case of our fairing, as the walls become more perfect
conductors, increasingly large fields will be required to dissipate the power being supplied by the transmit-
ter. In the case of perfect conductors, the fields grow infinitely large. This confirms our intuitive feel for
the problem. Enclosing the system with a conductive surface causes the fields to increase. In a way, this is
somewhat analogous to the interior of a microwave oven. However, an upper bound of infinity for the field
in our enclosed volume is not very helpful. A model that establishes a more reasonable upper bound needs
to be developed. To do this, we shall account for the fact that the enclosing surface is a non-ideal conductor
and ohmic losses will occur. We then strike a balance where the field strength rises to the value required to
dissipate the power being supplied. Power out equals power in.

Returning to the equation for the power loss per unit area in a conductive surface, rearrange the terms to
solve for H;,

|H,.|" =2W,/R, and

|H, | =\J2W, /R, . (A4)

For a plane wave normally incident on a perfect conductor, boundary condition analysis shows that the E
field is zero and all the energy is contained in the magnetic field. To meet this condition, the value for H;p.
must be twice the peak value of the H field in free space. See Ramo and Whinnery (Op. cit.) 285, for
discussion of this topic.

What follows is based on the assumption that the energy in the enclosed volume will be made up of
randomly directed plane waves, uniformly distributed within the volume. In essence, a uniform energy
density impinges on the walls. An equivalent wave can then be computed that will produce the same
energy loss in the surface. This new wave can be viewed as the sum of the normal incident components of
all the random waves.

Recalling that:
|H,.| = 2H, and

|H,| = \[W,/2R, . (AS)
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For plane waves in a perfect dielectric, it has been shown that E and H are related by Zy:
H=E/Z,;
where
Z, = Ju/€, (A6)

which is 377 ohms for free space. Substituting (A6) into (AS5) results in:

|E| = ZyyW, /2R, . (A7)

For plane waves, the energy stored per unit volume is the sum of the energy in the magnetic field and the
energy in the electric field. This has been shown to be:

U=U,+U,. (A8)
In free space:
U,=U,. (A9)
Where
U, = eE*/2 (Electric Field) and (A10)
U,_=uH*/2 (Magnetic Field). (A1)

In other words, the uniform energy density within the volune contains the same electric field energy
density as a wave of magnitude Eq everywhere within the volume. This concept has been used in the
analysis of RF test chambers. The object of these chambers is to create a space containing large, uniform
electromagnetic fields. For further discussion, see IEEE Transactions on Electromagnetic Compatibility,
February 1990.

Now examine a numerical example for a simple case of a 1 waitt isotropic source enclosed by a cylindrical
surface 3 meters in diameter and 13 meters high. This is a cru le representation of the volume between the
top of the fuel tank and the top of the fairing. The enclosing surface area (A) can be found to be 136.66 m2.
The power delivered by the 1 watt source must be absorbed by the enclosing surface. Assuming a uniform
power distribution, the average power density at the surface raust be:

W, =< P >/A=1/136.66 = 0.00732 watts / mZ. (A12)

Computing the equivalent wave that will produce this power loss at the surface:

Where Zo = 377 ohms, Rg = 0.015 ohms, ard Wi = 0.00732 w/m? with

|Ey| = Z)\[W, /2R, ; (A13)
gives

Eg = 377,J0.00732/((2)(0.015)) =377 (:494) = 186.2 v/m. (A14)



This result shows us that even moderate sources will create large fields when fully enclosed by a conduc-
tive surface. It also shows that the model needs to be refined a bit more.

Insert a solid cylinder 2 meters in diameter and 10 meters high within the previously defined volume. This
becomes a crude representation of second stage/spacecraft stack. This solid is defined as being electrically
connected to the original enclosing surface. This added solid provides additional surface area (for the
power to be dissipated into). A quick calculation reveals that the added solid has a surface area of 69.11 m2
associated with it. Thus the total surface area into which the power is being dissipated becomes 205.77 m?
and W =1/205.77 = 0.00486 w/m?2.

Thus for: Zy =377 ohms, Rg=0.015 ohms, and Wy = 0.00486 w/m2 with

IEO' =Zy W, /2R ;

gives

E, = 377,/.00486/((2)(.015)) =377 (0.402)= 151.7 v/m. (A15)

This result certainly warns us against radiating inside a fully sealed conductive fairing. It also gives us
some indication of the dominant factors in this process which are: the total surface area absorbing the
incident power; the surface resistance of that area; and the magnitude of the source.

There is one final refinement that we can add to this model. Itis a RF window, or aperture, in the enclosing

surface. Here, the power supplied by the source is equal to the sum of the power lost out the aperture, and
the power absorbed by the walls.

<P >= (A0 Wiy )+ (Agper W) (Al6)

It has been shown that the surface energy density for a plane wave in free space is given by the Poynting
vector S = E x H, and that the average value of the Poynting vector is:

< §>=(1/2)(E*/2) (A17)
Thus <S> describes the energy density of the waves leaving the enclosure via the aperture.

W,,., =< S >=(1/2)(E*/Z). (A18)

aper

Recalling from earlier, the surface loss is given by

“’surf = (1/2)(Rs) 2H0|2 = (2)(R:)(|E0|2/ZZ)' (Al9)
Thus:

< B >= (A, )RR /Z*)+ (A J2)(E2 /). (A20)
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Rearranging:

B = < B >/((24,(R)/Z) +((112)Ayer) /2)). (A21)
Thus:

|Ey| = \/< P >/ ((ZAMf(Rs) JZ2)+((12)(Aper) /z)) (A22)

Returning to our crude model, we insert a 0.5 m? aperture in the enclosing surface which is an approximate
value for a typical RF window area.

Thus: Agper =0.5m2,  Agys=205.27 m2,

Z =377 ohms, Rg=.015ohms, and Py=1 w.

Solving:

E, = \/ 1/ ((2(205.27(.015))/ 3772) +(:5/(2)(377))).
E, = [1/(433E-5+6.63E—4) =.[1/7.06E -4, and

E,=37.6v/m. (A23)

This result reveals the significant effect of an aperture in the enclosing surface. It also provides a clue for
the absence of reports of effects from RF radiation in the fairing in the past. It would seem that the field
strength under such conditions is probably greater than the qualification limits to which the equipment has
been tested. However, they are probably not sufficiently large to overcome simple shielding techniques,
shadowing, and inefficient coupling mechanisms.

Recalling that this analysis began with the purpose of establishing a bound for the field strength within the
fairing, we have determined the following:

« The field strength at any given point within the fairing envelope is greater than the value deter-
mined by the free space radiation formula.

« The field strength is less than the value determined by a balance between the power supplied by the
source, and the power lost in the walls and apertures.

It is our judgment that the energy balance approach provides a reasonable estimate of the field strength
while also yielding a conservative upper bound.
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B.1 INTRODUCTION

This Appendix defines the equations used to calculate the RF field strength resulting from RF transmission
within an enclosure. The surface of the enclosure (fairing) is, in general, an area of several materials.
Developing the equation for the RF field inside the enclosure, requires an understanding of the boundary of
two media. One media represents the air (media of the enclosed volume). The other media correlates to
the surface of the enclosure. Once an understanding of the RF wave relationships for the boundary is
reached, the solutions for the field inside the enclosure can be defined for the more general situation where
several different materials make up the surface of the enclosure. Equations for the electric field intensity,
the magnetic field intensity, and the power are derived. The equations are in terms of the incident wave’s
electric field intensity and the characteristic impedances of the surface media. The approach is:

a) develop the boundary equations for two media,

b) define the equations for the RF waves in each media.

c) define the equations for RF power in multiple materials, and
d) define the equations for RF field in an enclosed volume.

The equations for a media’s intrinsic wave impedance and characteristics are developed in Appendix D. It
is important to remember the goal is to determine the relationship between the RF power absorbed by the
enclosure surface area and the incident RF field within the enclosed volume.

B.2 EQUATIONS FOR THE BOUNDARY OF TWO MEDIA

The equations defining the RF waves in two media are needed. Media 1 represents the enclosure surface
material. Media O represents the internal volume material. Figure B-1 illustrates the boundary of the two
media at z=0 which is normal to the z-axis. An RF wave traveling along the z-axis in media 0 is incident
upon media 1 (which acts as a plate) atz=0. Zis negative in media 0. Three waves are of concern: the
incident wave in media 0, the reflected wave in media 0, and tke transmitted wave in media 1. This section
develops the equations for the electric field (E field) intensity and the magnetic field (H field) intensity at
the boundary of the two media. These fields can be written in terms of the incident wave electric field
intensity and the wave impedance of the media.

Media 0 tMedia 1
(incident wave)

Eo, Ho EY, H
— ] (transmitt3d wave)
Eo.Ho

_._.—->

(reflected wave)
z=0

Figure B-1. RF waves at the boundary of two media.
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B.2.1 BOUNDARY CONDITIONS OF MEDIA 0 AND MEDIA 1

This section derives the coefficients which relate the reflected and transmitted waves to the incident wave
fields. The boundary conditions require that the following relationships exist at the boundary:

a) The tangential component of the electric field intensity is continuous across the boundary. This
means:

Xx(éf —E\/()):O,
V. V,
nx(E{ ~ Ep ~ Eg) =0, and
E +E =E, ®B1)

b) The tangential component of the magnetic field intensity is continuous across the boundary. This
means:

r\zfx(ﬁ{ - ﬁo) =0,

r‘z’x(IEI’{ - I\if(’) - I},(f) =0, and

H +H =H (B2)
The relationship between the electric field intensity and magnetic field intensity within a media is:

E
l—l = 7]= intrinsic or wave impedance of the media. (B3)
|H]|

Using equation (B3) and the boundary conditions the following relationships are determined:

i

;11’. =1,, Incident wave fields in media 0; (B4)
o

Er

Ho' =~-1,. Reflected wave fields in media 0; and (BS)
o
t

—L =n,, Transmitted wave fields in media 1. (B6)

H,

B.2.1.1 Determine the Reflected E Field

Solve equations (B4), (B5), and (B6) for the H fields and substitute into equation (B2) to get:
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_E_é_gg_:ﬂ:i ) S i
n, M ™ n,,( - E2) B7)

Solving for the transmitted E field gives:
n i r
E =-L(E,~E}). (B8)
Mo
Substituting (B8) into equation (B1) gives:
E=E+E=1(E-E)= Mg Mg (BY)
o 0 7]

Collecting terms:

E-Dp-_E -0

o oand

Mo o

(B10)
Lno 771) Er(no-*_nl)
o o
Mo o
Therefore, the reflected E field is related to the incident E field by:

E T’l no

; (B11)
E, m,+m

This is the familiar reflection coefficient term presented in the text books. This defines the relationship of
the incident and reflected waves within the media “0,” at tte boundary; the traveling wave within the
media is discussed in section B.3.2.1.

B.2.1.2 Determine the Transmitted E Field

Solve equation (B11) for the reflected electric intensity:

El = (r'l UO)E‘ (B12)
n0+n1
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Substitute into equation (B1):

£ [ﬂ__n]p, B and
Tlo + T’l

B :E;(Hm—nojzgé[nﬁnﬁm—no}gé[ 21, J
no + nl no + nl r’o + 771 (B13)

So that the transmitted coefficient for the electric field intensities Is:

Ez 2n,

Al . (B14)
Eo Tlo + nl

This is the term normally presented in texts. Remember, this coefficient only defines the relationship at the
boundary. For the more general case of a traveling wave within the media see section B.3.3.1.

B.2.1.3 Determine the Reflected H Field
Solving equations (B4), (B5), and (B6) for the E fields and substituting into equation (B1) gives:
n,H, —n,Hy =B =n,(A,- A]). (B15)

Solving for the transmitted H field:

B = (g 1), B16)
n

Substituting into equation (B2):

L (B17)
EI;(I - &) = —FI;(I +&]
h s
Therefore the reflected H field is related to the incident H field by:

[_1’ no - n]

(B18)

0
H ¢‘) no + nl
This is the reflection coefficient normally presented in texts. Remember, this coefficient only defines the
relationship at the boundary. For the more general case of a traveling wave within the media see section

B.3.2.1.
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B.2.1.4 Determine the Transmitted H Field

Solving equation (B18) for the reflected magnetic field intensity and substituting into equation (B2) gives:

A+ H["_Ii) = A and

Mo + 771
(B19)
H(i)(no +M+1, —Th ] - A
no + 771
Solving for the transmission coefficient for the magnetic field intensity:
H 2
2o Mo (B20)
Ho T’o + nl

This term is the form presented in text books. Remember, this coefficient only defines the relationship at
the boundary. For the more general case of a traveling wave within the media see section B.3.3.1.

B.3 DETERMINE THE EQUATIONS FOR THE WAVES IN EACH MEDIA

Derive the equations defining the wave propagation and boundary conditions. Assuming a RF wave is
traveling in (media 0) and incident upon a plate (media 1), the conditions and relationships for the incident,
reflected, and transmitted waves at the boundary between the media O (air) and plate will be developed.
The wave is traveling along the z-axis.

B.3.1 DERIVE THE EQUATIONS FOR THE INCIDENT WAVE
B.3.1.1 Components of the Incident Wave

The components of a wave are the electric field intensity anc the magnetic field intensity. The incident
wave, which is traveling in media 0, is defined by:

E(z,1) = Ele7e/™g;
[y i Yoz, jax = (B21)
H'(z,t)= H,e "™e'“a, .

The wave components can be related using the relationship between the electric and magnetic fields within
amedia. For the wave in media O:

H|=—. (B22)
Mo
The incident wave is therefore defined by substituting equation (B22) into equations (B21) giving:
Ej(z,t)= Eje™"*¢/"a, and (B23)
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V. V, V.
V. El o El * o El . o
Hi(z,t) = [—")e"“*e’“c‘{; = [—](n—"]e niglug = {—]2)(% Je T (B24)

g M A 7,

Where the term ( ') is the conjugate of the media’s complex impedance. Since the conjugate of the

product of two complex numbers is equal to the product of the conjugates of each of the complex numbers,
the conjugate of the magnetic field is determined directly from equation (B24) as:

V.«

fzj(z,t)' = [|E:’|2 ](no)e""’ze""c\z/:_. (B24a)
Tho )

B.3.1.2 Incident Power

A wave, composed of complex phasors, has its instantaneous power per unit area defined by the cross
product of the electric field and the conjugate of the magnetic field. Therefore the instantaneous power per

unit area traveling in media O is the product of equation (B23) and (B24a):

v V.2
)= Ex@0xH: (2,0 = g[ EDVJ(no)e‘”“e”“’gz = [l e @2
o o

For sine waves, the average power per unit area is defined as one half the real part of the instantaneous
power, which gives from equation (B25):

V.2
|E]

il (1 )e 2%e2d L. (B26)
0

2z

o

<.SV'> = %real

The average power per unit area incident on the plate is therefore the average power traveling in media O at
the boundary. It is calculated using equation (B26) with z = -0:

PAs Ef

V. 1 0 _ v 1 o

S,) = =reals| ‘= [(n)e ™ a, t = = real(n,). (B27)
&)= il ™) 2 n” /)

The average power incident on the plate at the boundary is given by the product of equation (B27) and the
surface area of the plate (media 1):

’ A, creal(n,). (B27a)
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B.3.2 REFLECTED WAVE EQUATIONS
B.3.2.1 Components of the Reflected Wave

The reflected wave (also traveling in media 0) is defined by:

E’(z,t) Ele’* ’w‘a and

(B28)
H'(z, 1) = ngyoze’“'c\zly :

The reflected wave components traveling in media O can be determined using the relationship between the
electric and magnetic fields within a media. For the wave in media O:

=12 (B29)

The components of the reflected wave at the boundary are related to the incident wave components by
using equation (B29) in equation (B18) giving:

¥ - (no nl] 5 - (no nlj ®30)
n,+1 M, + 1, 770
Equation (B4) states:
& _(n no)E, B3
Mo +Th

The reflected wave is therefore defined by substituting equation (B30) and (B31) into equations
(B28) giving:

1\1’; (z,t)= [M—)éemem&’y. (B32)
770(770 + 771)

The conjugate of the magnetic field is:

I\if; (Z,t)‘ _ (770 - 7712) Mo (no 2+ nl) g-ci'emeiargy and (B32a)
| In, + 11
Ej(z.) = ( no] Epe’™e/™a, &)
Mo+



B.3.2.2 Reflected Power

A wave, composed of complex phasors, has its instantaneous power per unit area defined as the cross
product of the electric field and the conjugate of the magnetic field. Therefore the instantaneous power per

unit area reflected is the cross product of equation (B33) and (B32a) giving:
2
2['”0 nl‘] 7702 eZyozeﬂaxgz' (B34)
‘no + nl ' ‘no’

For sine waves, the average power per unit area traveling in the plate is defined as one half the real part of
the instantaneous power, which gives from equation (B34):

v V. V. V.
S, =E,(z,0)xH(z,1)" =-|E]

o

Vo2
1

[

v _l ’770 _nll 2 E 27,2 V
<S0 > =3 ('770 N W,J }Tlolz {e az}real{no}. (B35)

The average power per unit area reflected from the plate is therefore the average power at the boundary of
media 0 and media 1. It is calculated using equation (B35) with z=0:

2, V.2
v, 1 Ino—nll] |E;
S, )== - real{n, }. (B36)
57) 2(\770“71! uN !

The average power reflected from a plate at the boundary is given by the product of equation (B36) and the
surface area of the plate:

2 1 V.2
g 1 '770 —771, lEal
P =(S)A, =— A 1n 1.
< ”> surf 2(’170 +n]|) ‘UOIZ surfrea {no} (B37)

B.3.3 DETERMINE THE EQUATIONS FOR THE TRANSMITTED WAVE

B.3.3.1 Components of the Transmitted Wave

The transmitted wave, traveling in the plate (media 1), is defined by:

A4 - . Vv
E'(z,t) = Ele "¢/®a_ and

v i (B38)
H'(z,t)= Hle Nee!q, .

The wave components entering the plate can be determined using the relationship between the electric and
magnetic fields within a media. For the wave in media 1:

V. El'
=1
U\

(B39)
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The components of the wave entering the plate at the boundary are related to the incident wave compo-
nents by using equation (B39) in equations (B20) giving:

, E i
H! = ( 2o ]1}7; = [ 2o ] ol 2E_ (B40)
Mo +Th Mo+M) M T+
Equation (B14) states:
A
E{ = (—ZL]E; . (B41)
Mo+

The wave within the plate is therefore defined by substituting equation (B40) and (B41) into equations
(B38) giving:

V.

\'4 ! .

H'(z,t):( 2f" )e‘mef“"?{y. (B42)
Mo +Th

The conjugate of the magnetic field is:

V. x
. | 2E + .
1\1"(2,1) = —Oﬁo—zn—l)- e y‘ze’“"z}’y and (B42a)
Iﬂo + 771|
y 2 E!
EI(Z, t) — (_i__"_)e‘hzejax;\{x _ (B43)
Mo +Th

B.3.3.2 Transmitted Power

Figure B-2 illustrates the incident, reflected, and transmitted power per unit area at the boundary of media
0 and the media 1 plate made of one material.

Y]
) 1
/' x
Sio / /
media 1
media0
S%

Figure B-2. RF power at boundary with a single material.



A wave, composed of complex phasors, has instantaneous power per unit area defined as the cross product
of the electric field and the conjugate of the magnetic field. Therefore, the instantaneous power per unit
area traveling in the plate is the cross product of equation (B43) and (B42a) giving:

2

nle—2ylzej2wr;{. (B44)

Z

AR v . 2@2{
S =E/(z,t)xH'(z,1) =] ———
7, +,|

For sine waves, the average power per unit area traveling in the plate is defined as one half the real part of
the instantaneous power, which gives from equation (B44):

V.
1 2E,
2\ |n, +n,|

v

§)-

e a real{n,}. (B45)

The average power per unit area absorbed in the plate is therefore the average power entering the plate at
the boundary of media O and media 1. It is calculated using equation (B45) with z = +0:

\' 2 Vo2
v, 1 2E!|] Y AE/[
S )=—| ——— azreal{nl}=——2azreal{nl}. (B46)
< > 2 ,770'*'771‘ ‘770"‘7?1,

The total average power entering media 1 at the boundary is given by the product of the power per unit area
and the surface area of the plate:

- ___|_ real{n, }. (B47)

B.4 POWER FOR A PLATE OF MULTIPLE MATERIALS

Since the internal surface area of an enclosure (fairing/vehicle) is comprised of several different materials,
it is necessary to consider the affects of replacing the single plate material with a plate made of several
materials. This section addresses this condition.

Replace the media 1 plate at the boundary by a patchwork of several adjacent plates of different material as
illustrated in Figure B-3. The incident power, the reflected power, and the absorbed power can be derived

in terms of the incident E field and the impedances of the various materials using the equations in section
2.2



Figure B-3. RF waves at the boundary with several materials.

B.4.1 POWER OF THE INCIDENT WAVE ON MULTIPLE MATERIALS

The total incident power on several different plates is the sum of all the power incident on each plate, or
using equation (B27a):

PT" = <’Sv‘li>Al—surf + <§2' >A2—surf +- <§I: >Ak—surf and

. k=m
PTI" = 1 <§2>Ak—surf . (B48)

>~
1}

The magnitude of the incident wave is the same for all plates although each plate would absorb different
amounts of power. This means the incident electric field is constant for all plates, therefore substituting
equation (B27) into equation (B48) and simplifying gives:

Pl=—" real(no)(,i"Ak_M). (B49)

Equation (B49) is the total of the average power which is incident on all plates.
B.4.2 POWER OF THE REFLECTED WAVES FROM MULTIPLE MATERIALS

The total power reflected from several different plates usiny equation (B37) is the sum of the reflected
powers from each plate, or:

PT," = <§1r>Al—surf + <§£>A2—surf +- <§kr>Ak- surf and (BSO)
Pl = %k:m real<.SY,: ) (B51)
=1

The incident wave magnitude is the same for all plates although each plate would absorb different amounts
of power. This means the incident electric field is constant for all plates, therefore substituting equation
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(B36) into equation (B51) and simplifying gives:

V. 2
‘E{:'zreal{no} k=mA (lno _nk'J
2ln0|2 et '770 + nk '

r —

T

(B52)

k=1

Equation (B41) gives the average power reflected from all the materials.
B.4.3 POWER ENTERING THE SEVERAL MATERIALS

The total power absorbed by several plates of different materials using equation (B47) is the sum of all the
power entering each individual plate, or:

PTI' = <‘S\‘/lt >Al—swf + <‘S\'/2t>A2—surf +- <§I: >Ak—smf and
k=m

v
A Tt" = Z <Sl:>Ak—smf- (B53)
k=1

The incident wave magnitude is the same for all plates although each plate would absorb different amounts
of power. This means the electric field is constant for all plates, therefore substituting equation (B46) into
equation (B53) and simplifying gives:

(B54)

Equation (B54) gives the total average power entering all the materials and is the key to solving for the
field inside an enclosure.

B.5 DETERMINE THE ELECTRIC (E) FIELD IN AN ENCLOSURE

Consider an enclosure where the surface area is made up of several different materials. An antenna is
radiating within the enclosure. RF energy will be reflected from the surface and will increase until the
incident power on the surface reaches a level where the surface absorbs the amount of power being radi-
ated by the antenna. The magnitude of the incident wave is first determined and then the equivalent E field
standing wave inside the enclosure is determined.

B.5.1 VALUE OF THE INCIDENT WAVE IN THE ENCLOSURE

For M number of media making up the enclosure surface, the magnitude of the incident wave which would
give the power loss is therefore determined by solving equation (B54) for the electric field giving:

i P
il (P)
k=m
z 2Axqurf real{—nk—z} . (B55)
\ =l Ino +nk|
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This equation is exact, where P is the power in watts radiated by the antenna. However in evaluating the E
field, care must be exercised to properly evaluate the real part of the impedance ratio term.

B.5.2 STANDING WAVE IN THE ENCLOSURE

In our problem the equivalent RF wave incident upon the surface is producing the loss of energy. A re-
flected wave is also present within the enclosure. The reflected wave and the incident wave combine to
form a standing wave within the enclosure. A computation of the standing wave resulting from the reflec-
tion from the plate is desired.

a) In the air, the incident and reflected wave combine to form a standing wave defined by:

\' V. \'4 .
_ j(ex—B2) o+ |V
E(z.1) = [Eie/ P2 + e/ P | and

v VL v (B56)
E(z,t) = ejﬂx[E‘l)eJ(-ﬁlz) + Eorej(ﬂlz)];‘l/; )
b) Solving in terms of the incident wave components:

v - V.

Since: E, = —(MJE; (B57)

Mo +Th
then equation (B56) becomes:
V. . . — . I
E(Z, t) = E:)e]at eJ(_ﬂIZ) _(.n_o_r’_l}el(ﬁlz) a’; (BSS)
Mo+ Th

Using Euler’s equation :
e’ =cosu+jsinu
and (B59)

e ™ =cosu—jsinu

for ei(p 2) and ei(_liz ) in equation (B58) results in:

E@n= E") el {(z—zg’il(cos( Bz) - jsin(fz)) - [—;:—;Z—i)(cos( Bz) + j sin( ﬁz))ilc\z; :

Collecting terms and simplifying gives:

I\Ef(z, t)= éeia{(—ﬂl—) cos fBz - (—2&—) jsin Bz 21/;. (B60)
Mo +Th Mo+
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Using Euler’s equation for ¢/% gives:

g(z,t):é(coswt—i—jsina)t)[ 21 )cosﬁz—( Zall )jsinﬁz 21/;. (B61)
o+ Mo+

Equation (B61) gives the general computation defining the standing wave inside the enclosure. A highly
reflective boundary occurs for values of 1, =0 and equation (B61) becomes:

E(z,1)=2E! sin(B,z)[sin(er) - j cos(ar)]a.. (B62)

Basically, the standing wave inside the enclosure is twice the incident wave magnitude.
B.6 CONCLUSION

Equation (B55) can be used to calculate the RF field strength inside an enclosure. The equation uses the
surface areas of different materials and the complex impedance of the materials. Appendix C provides the
equations for the complex impedance and intrinsic characteristics of materials. The standing wave in the
enclosure has an upper boundary which is approximately twice the magnitude of the incident wave calcu-
lated by equation (B55). It should be noted that the value of the electric field given by equation (B55) is the
magnitude of the wave. It should be multiplied by 0.707 to determine the RMS value.






APPENDIX C

Derivation of the Equations for a Media’s
Intrinsic Characteristics

by
Jerry Reddell
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C.1 INTRODUCTION

An exact computation of the intrinsic characteristics of different materials or medias is needed when per-
forming assessments of the reflections and transmission of electromagnetic waves in a system containing
several materials. Many textbooks give approximate equations which are applicable to only one type of
media and the form and units of the equation varies from textbook to textbook. In many cases considerable
confusion exists on the meaning and applicability of the results to a particular problem. This appendix
derives the generic equations for the characteristics. The equations defining the wave impedance and the
wave propagation are developed. Metric units are used thrcughout. A media’s intrinsic characteristics
define the relationships between the electric and magnetic portions of the wave as well as the propagation
losses and velocity within the media. A media’s intrinsic characteristics depend on the media’s physical
properties:

U = permeability; (henry per meter),

€ = permittivity;  (farad per meter), and
o = conductivity; (mho per meter).

The characteristics also depend on the frequency of the wave:
o = frequency; (radians per second).

The propagation characteristic is related to three other impor-ant terms: (1) propagation velocity, (2) skin
depth, and (3) wavelength; which are also derived from the propagation characteristic equations.

C.2 WAVE IMPEDANCE (n)

The wave impedance or intrinsic impedance defines the relationship between the magnetic portion of the
wave and the electric portion. It is defined as:

n=i. (C1)

VxH =J ilz d C2)
=J + 5 an (
. OB
\Y =-> (C3)
But
J,=oF, (C4)
D=¢E, (C5)
B=puH, (C6)
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where E=Ee'® and H = He/™

Differentiating equations (C5) and (C6) with respect to time (t) gives:

oD J(eE d(E d(Ee’™ . _

~= (at )=£ (gt)=£ (5‘t )=jweEe"‘”=jweE and (C7)
o _Id(eE) I(E) J(ES™) o _

—_— = = = 1 = 1 . C8
> P € o £ P JjweEe JweE (C8)

Substituting equations (C4) and (C7) into equation (C2), and substituting equation (C8) into equation (C3)
gives:

Vaf = (o + jowe)Eand

o _ (C9)
VxE = —jouH-
Solving equation (C1) for E gives |E|=7|A| and substituting into equations (C9) gives:
|VxH|=|(o + jwe)nd]| and (C10)
WXUI?FT],VXI?‘:,—J'G)MI- (C11)
Solving equation (C11) for the cross product gives:
Vx| = Iﬂ 1-7‘ (C12)
n
Therefore equation (C12) and equation (C10) are equal and :
9 =/_%’E *|B] = (o + jweyn]*|A]. 13
From which is obtained:
- .
(% =|(o + jwe)n. (C14)
From which comes:
2 Jou
=1 C15

C3



Therefore the wave or intrinsic impedance becomes:

n="ng+jN; = jon /(C + jwe) . (C16)

This is the form of the equation which is normally presented in text books. A more desirable form can be
derived. Dividing numerator and denominator by ®e gives:

() | ) 1%e)-1]
(%) \[(Twe) 3] [(Tae) -]

(C17)

Finally:

N R

| ]

The complex form under the radical requires additional operations to find a value for the impedance. This
can be accomplished by determining the absolute value of the impedance. Let:

. (C18)

(C19)

Putting A in equation (C18) becomes:

n=A [1 + J(G/wg)] (C20)

Multiplying the term in the radical by the conjugate of the term gives:

1= [ S| [~ 1) 7! () 2

= [+ Tae) 207 ()= A [+ el ] 7 () -2

Therefore the absolute value of the wave impedance is:

Il = A\F w{[ 1+ (%,8)2] : (C23)
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Now inserting equation (C19) for A gives :

(B [+ad] | (4)

Inl = — = — = —.
| [ead] ([ Car] Cul]

The magnitude of the associated angle is:

0= \/.4 tan_l(o/wg) - (%) tan_l(i).

c A
A = tan -1 — t}l = —
If (— en > and

cos(6) = COS( % ) _ \/cos(A) +1 cos(tan"(%j) +1 |

But

2
o WE o

cos A = cos tan_l(——)) = — =1/ 1+(—) }
( we NJo? + w?e? (03

Therefore equation (C26) becomes:

)
()

The real part of wave impedance is therefore:

cosf =

C-5
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(C25)

(C26)

(C27)

(C28)

(C29)



Inserting equation (C24) for the absolute value of the impedaice gives:

B )

=

Mg = - . (C30)
[+l ] 21(2)
wE
Finally the real portion of the impedance is simplified to:
2
(a)[ () ]
3 wE
Mg = . (C31)

2
(o)
21+(2)
we
The imaginary part of wave impedance is similarly derived:

o A
If A=tan —l(_we_) then @ = 5 and using equation (C27) in the following gives:

A A) 1_ |y : + ws
sin @ = sin( 5 ) cos( (C32)

\/
a)e
and the imaginary part of equation (C16) becomes:

HROR)
{-(2))

Equations (C31) and (C33) provide exact computations of th¢ real and imaginary portions of the intrinsic
or wave impedance while equation (C24) provides the exact computation for the absolute magnitude of the
impedance for any material.

7, =Inl*sinf = (C33)
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C.2.2 WAVE PROPAGATION CONSTANTS

The propagation of a wave through a media can also be determined using the equations (C9) which are

repeated here:
VxH = (0 + jwe)E and
VxE = — jouH -
Solving for the electric field and magnetic field gives:
H = VxE/(~jwu) and
E = VxH/(o + jwe).
Substituting equations (C35) into equations (C34) results in:
Vx(VxE) = —jou(o + jwe)E and

Vx(?xf]) = —jou(o + jwe)H.

The left portion of equations (C36) and (C37) are defined by the identity:

Vx(Vxd) = V(Vea)-v2a.

so equations (C36) and (C37) become:
V(V . E) ~V2E =—jou(o + jwe)E and
V(VeH)-V?H = - jou(c + jwe)A.

Also from Maxwell’s equations:

VeD=p
But
D = ¢E and
VeD=VeeE=g(VeE)=p.
Therefore:
VeE=£
€

Since there is no space charge in the region, then equation (C41) gives:

=0.

V.E:B:Q
€ &

Cc7

(C34)

(C35)

(C36)

(C37)

(C38)

(C39)

(C40)

(C41)

(C42)



Another Maxwell equation is:

VeB=0 (C43)
but

B=pA (C44)
and therefore

VOB——-VO(/Lﬁ)=u(VOﬁ)=0. (C45)
So

VeH=0. (C46)

Therefore using equations (C42) and (C46) in equations (C38) reduce to:

V2E = jou(o + jwe)E = y*E and

ym _ 5~ (C47)
V?’H = jou(o + joe)H=y"H .
From equation (C47) the propagation constant ¥ is defined &s:
y* = jou(o + joe) (C48)
and therefore:
¥ = a+ jB = Jjou(o + jwe) = ou(jo - we). (C49)

This is the equation normally given in text books for the propagation constant. A more desirable and
useful form will now be developed.

_
y = Jou(jo — ve) = \/wzuea - ji) (C50)

A= ue. (C51)

Substituting A into equation (C50) results in:

y=Al - {(%e)| (C52)

Multiplying the term in the radical by the conjugate of the t:rm determines the absolute value giving:

= - 1) [+ 1Tl o™ (T (s
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Performing the multiplication:
Y= A\/%z + (O/ax‘:)j‘é tan"l(‘o/wg) and

—
y= A\N[] + (%)8)2}4 % tan

Therefore the absolute value of the wave impedance is:

N

).

Substituting equation (C51) into equation (C56) gives:

The angle between the real and imaginary parts is determined from equation (C55):

6= \/ £ tan‘l(“ywe) = (é)[n - tan‘l(%)}

If A=tan“(£-) then 0= E—ltan_l(—o;)
WE 2 2
and the phase shift constant which is defined as the imaginary part of the propagation constant is:

)

B = y|sin6 = lylsin(g—%tan" fg‘) - |y|cosGtan

Since cos(8) = cos[%) = /% ,

then COSA = cos(tan'l(

(o)

=)-

e
o’ +w

2

wE

=1/ 1+(
£

Therefore substituting equation (C61) into equation (C60) gives:

cos8 =

1+ (—G—
WE

20l

(o}

e

2
)+1

;

C-9
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4 O
wE

J

(C54)

(C55)

(C56)

(C57)

(C58)

(C59)

(C60)

(Cé1)

(C62)



Then from equations (C62) and (C59) comes:

— w2
) \/ 1+ (—G—) +1
we (C63)

B=lyl x| ——+1|=M] —
e ) )

\/1+ g
wE E

Using equation (C57) for the absolute value of propagation constant gives:

B=owue 1+ LAY @H. (C64)
e 2+

This reduces to give the phase shift constant as:

2
B0 Hﬁ[ () +1}. <65
2 WE

Similarly the attenuation constant is defined as the real part of the propagation constant:

a =|y|cos(8) =] cos(g— —~ %) =l sin[%).

(o)
if A =tan'(—) then:
wWE

sin(é) =, cos(A)-1 _ (C66)
2 2
The attenuation constant can be calculated from:
ue aY
o=lyl*sin@=0 — 1+(-——) —1}. (C67)
2 WE
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Equation (C65) gives the exact computation of the phase shift constant in any material while equation
(C67) provides the exact computation for the attenuation constant for any material.

C.3 OTHER CHARACTERISTICS

Three other terms can be determined from the propagation constants. They are wave velocity in the media,
wavelength in the media, and skin depth.

C.3.1 WAVE VELOCITY IN THE MEDIA

The velocity of a RF wave in a media is dependent on the media properties. It is not, in general, the same
as in a vacuum. The propagation velocity in any media (including vacuum) is given by:

Us%:w/w %( 1+(%)2+1]:”\/§[V1+(i)2H]' (C68)

C.3.2 WAVELENGTH IN A MEDIA

The wavelength inside a material is not the same as in vacuum. The wavelength inside any media (includ-
ing vacuum) is given by:

A, =27/B =21/ @ %[!1 (i)zﬂ} (C69)

V' \we

C.3.3 SKIN DEPTH

The skin depth is defined as the distance (z) inside the media at which the magnitude of the wave is
attenuated to the factor 1/e, which means:

E(z,t)=Eje 'ePe/™ = E o~ %ePrpir

or
el =g (C70)
soz=1,and
1
z=—.
o

1 1
=—= . (C71)

EaRGR
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This is the general or exact computation for the skin depth in aay material (including vacuum). Two quick
checks of the validity of equation (C71) are now made. A look at the equation (C71) for vacuum, which
has a conductivity of zero, gives:

1 1 1

1

Svacuum = = = ==

2 BE(F_) wlFE@) °

wE[l (i) —1] "’\E(ﬁ ) 020
\/ 2 |\ we

A skin depth of infinity is what is intuitively expected for vacuum.

The skin depth equation which is normally presented in text books applies only to highly conductive

materials and is an approximation determined from equation (C71). When the conductivity is large (> 100
mho per meter) then equation (C71) gives:

1 1 1 1
5=~ =

JelE) P

This is the skin depth equation typically presented in textbooks.

C.4 SUMMARY

Equations (C24), (C30), and (C33) define the computations for the components of the complex wave
impedance of a material. Equations (C57), (C65), and (C67) define the computations for the components
of the complex wave propagation constant of a material. Equations (C68), (C69), and (C71) give the
velocity, wavelength, and skin depth calculations for a material. These equations are exact and are valid
for any material including vacuum.
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APPENDIX D

Method for Determining the Effective Impedance of the
Acoustic Blankets on a Surface

by
Jerry Reddell



D.1 INTRODUCTION

The evaluation of the RF field strength inside the Delta Launch Vehicle Fairing is complicated by the
presence of acoustic blankets which line the inner surface of the fairing. These blankets are made of a
layer of fiberglass batting covered on each side with a thin sheet of fiberglass cloth which has been coated
with carbon loaded teflon. A method of evaluating the blankets affect on the RF fields is needed. Figure
1 illustrates the blanket construction and installation.

o

cover1 cover2

Figure D-1. Layers of material for the acoustic blanket installation on the fairing wall.

Equation (B55) of Appendix B indicates the blanketed area and its impedance are required to evaluate the
affect on the RF field strength. The area is determined rather easily. However, the effective impedance of
the blanket is not easily determined. The effective impedance is a function of three layers of material, each
material’s thickness, each layer’s RF characteristics, and the RF characteristics of the wall. Previous
attempts to assess the blanket’s impact involved series summing of successive reflections and transmit-
tances. The approach was computationally intense and results were not convincing. An accurate model
for computing the effective impedance of the blanket covered area is needed. This note derives the math-
ematical equation used to accurately determine the effective impedance of the area covered by the blankets.
The effective impedance can then be used to calculate the RF fields inside the fairing.

The acoustic blanket also covers the RF window in the fairing wall. A method of calculating the RF
transmittance (insertion loss) of the acoustic blanket is also needed. This note also develops the equations
which define the effective transmittance through the blanket covered window.

D.2 APPROACH

The analytical approach for solving the problem is:

a) Determine the equivalent impedance of the areas ccvered by layers of material (blankets). This
requires knowing the RF characteristics and dimens;ons of the materials. The equivalent imped-
ance can be determined by Equation D17 which is dzrived in section D.3 of this Appendix. The
determination must start at the wall and proceed one layer at a time to the innermost layer to the
center of the enclosure of fairing.

b) Having determined the impedances of the various areas, use equation B55 of Appendix B to
calculate the RF field inside the fairing or enclosure.
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¢) Use equations D21, D22 and D23 and the impedances at each boundary (as determined in step a)
to compute the RF field which is transmitted through each layer of material in the blanket, start-
ing at the innermost material surface and proceeding toward the wall or open RF window. These
equations are derived in section D.4 of this Appendix.

Section D.5 of this Appendix applies the equations to the blanket covered fairing wall to illustrate the
methodology for arriving at the equivalent surface impedance and transmittance through the blanket.

D.3 EQUIVALENT IMPEDANCE OF A MATERIAL BOUNDED BY TWO MEDIA

Consider a boundary between two media as shown in Figure D-2.

' media 1 media 2
Ei,Hi

ELH

—
b

Er,Hr

——

Figure D-2. RF waves at the boundary of two media.

An incident wave is traveling in media 1 toward the boundary. The reflected wave is traveling in media 1
away from the boundary. The incident and reflected waves, as a function of the distance (1) from the
boundary, are described mathematically by equations (B23), (B24), and (B28) of Appendix B. The inci-
dent wave is defined by:

£l = plgiox Ao +iB)=1) 4

(D1)
H = gl gjox ~on+i ) -1)
The reflected wave is:
E" = ERejaxe-(ax +jBy (1) and 2

HT = gRpjax ~(ca +iBy)(1).

Where the propagation constant (y) has been replaced by its complex parts, the attenuation constant (o) and
the phase shift constant (Bl).

The total field at distance (1;) from the boundary is given by the sum of the incident and reflected fields, or:

£ = plojo (i)l | pR jox ~(on+jBi)l,
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Htot - Hl + Hr’ and 4
. : (D4)
gt = gl ion (o tiB)l R jor et i)

The magnitudes of the reflected and incident waves are related by the complex impedances of the two
media as defined in equations (C11) and (C18) of Appendix C such that:

ER = Th - 771 (D5)
m+ 771
and
HE = h—mh 772 (D6)
m+ Th

Using equation (D5) in equation (D3) gives:

Lot _ gl o {e(a, B, [zz-_m}—(al 16, )I}, (D7)
M+

Using equation (D6) in equation (D4) gives:
o = Hlei™ { Jetib)! [771 772] ~(o+jBi )l } (D8)
L+

Using Euler’s formula to define:
/Pl = cos(B,1) + jsin(By) and
e P = cos(Bl) - jsin(Byl)-

Which are now used in equations (D7) and (D8) resulting in:

ETo = Ele/™ {eall(cos B+ jsin Bil)+ {22 +:’;} ~(cos Byl - jsin Byl )} (D9)
1
and
T = Hlei® { ™! (cos Byl + jsin Bil) _{%—%je'“ﬂ (cos Byl - jsin Bll)}. (D10)
2+

Collecting the real and imaginary portions of (D9) and (D10) gives:

ET = E’ej“”{[e \::;2 +:;1] ]cos Bl + jsin Bll(e“" {Z’ +ZI} % l} and (D11)
2t Th » T
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HTo = glgiol (eall _[u}—ad)cos B+ jsin ﬂ]l[eall {u}—aﬂ J _ (D12)
m+n h+1n

n,+n
Multiplying equations (D11) and (D12) by *nz n nl gives:
2 1

o _ B @ - » a
E™ = m in {([772 +m e +[n, - Je all)cos Byl + jsin ,311([772 +m e ~[n, - Thle 11)} (D13)
2+
and
Tot H'e™™ o)l -yl - ol —ayl
H™ = — {([772 +Je™ [, -] )COS Byl + jsin ﬂll([nz +1Je™" +[n, -y Je )} (D14)
2t

The impedance is defined as the ratio of the total E-field to the total H-field (the ratio of equation (D13) to
equation (D14)):

E' [(772 +1)e + (m-m, )e_a]l] cos Bl + j[(nz +1)e - (m - nl)e'“’l] sin B!

D=—7 . (D15
"o H' [(772 +1)e ~ (m -, )e_all] cos Bl + j[(’?z + )ea‘l +(n, -y )e"a‘l] sin B,/ B15)
1
Since ? =1, then equation (D15) becomes:
sty =y LT ) (= m)e Jeos Bt + j{(m, + m,)e — (n, —m)e™']sm 1 (D16)
- 1 [(772 +1,)e%" ~(m, -, )e_“‘lJ cos Bl + j[(772 +my)e®’ +(n, -, )e‘“‘l] sin B/

A simplified version of this equation often appears in text books when the media £ is considered lossless
(0, =0). (See reference 4, page 288, section 7-09, equation 10, for an example).

M2 cos Byl + jm sin ﬁll}

D=
o 771{"1 cos Byl + jn, sin B!

Equation (D16) shows that the impedance at a distance from the boundary is not the constant value of
media 1 impedance. It is altered by the presence of the media 2 intrinsic impedance and varies with the
distance from the boundary. An interesting result of equation (D16) occurs when the distance, 1, from
media 1 is a multiple of a half wavelength, where the impedance is equal to the impedance of media 2.
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Now consider the addition of a third media and a second bot ndary as shown in Figure D-3.

Media 3 Media1 |Media?2
E H
L »E'H!

EH —

7 —

Figure D-3. RF waves at surface boundarg with two layers of material.

The impedance at the boundary of media 3 and 1 is given by equation (D16) with “1” replaced by the
thickness (T) of media 1 giving:

T _ -, T 1o T _ -7} -
n(T)=7 [(772 + 711)6 T + (772 771)6_ ]cosﬁlT + J[(TE2 + 771)3 T (112 nl)e— :smﬂlT o
[+ m)e™ — (1, - n)e ™ JeosBT + f(n, +n)e™ +(m, —n)Je ™ [sinT

(¢

Media 1 is of thickness (T.) Media 2 impedance, 7, can be thought of as a ‘load’ impedance which alters
the intrinsic media 1 impedance at its boundary with media 3. Media 1 and media 2 can be replaced, as
illustrated in Figure D-4, with an equivalent media impedance given by equation (D17) using the thickness

(T) of media 1 for the value of “1.”
Media 3 Media 1/2
EH ’——-J equivalent

- — E'H
E'H —

Figure D-4. RF waves at the boundary of an equivalent surface material.

Successive application of equation (D17) can reduce several layers of different media with varying thick-
nesses to a single boundary problem.

D.4 TRANSMITTANCE THROUGH A MEDIA OF THICKNESS, T
Considering Figure D-3, the transmittance into media 2 at its boundary is given by:

and

ET =E'0)+EfO)=E"™|

(D18)
HT = H (0)+ H}(0)=H™

1=0

The total field at the boundary of media 1 and 2 is determined from equations (D13) and (D14) by setting
1 =0. The field at boundary of media 3 and 1 is given by the equations when I = T. The ratio of the media
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1 and 2 boundary total field to the field at the boundary of 2 and 3 (distance T) is given by:

Tot
E ) _ 21, .(D19)
E™(T) ([772 +1, ™" + (7, —m, ]e_alr) cos BiT + jsin ﬂlT([nz T ]ealT ~[m-m ]e_alr)
and
HTO!(O) 217
= L . (D20)

H™(T) ([772 +m]e*" —[n, -, ]e_a‘T) cos B,T + jsin ﬂlT([n2 +mJe™” +[n, - n, ]e_“lT)

Solve for the total field, £7'(0) and H™'(0), at media 2 boundary and substitute into equations
(D18) gives

r 2m,E™(T)
E = oT -oqT 2 . - oT -ouT (D21)
([772 + 1] +[m, —my Je™™ )003/31T+J sin By ([772 +1 ™" = [n, —myJe™ )
and
HT = 21171 . (D22)
(['72 +1 ]ealT - [nz ~ ]e_alT) cos BT + jsin B, T([n2 +1 ]ealT + [n2 -1 ]e_alT)
Define four terms:
A, = real([n + 771 [ ]e‘"' )
= imag([n, +n, Je [ m]e"),
BR = real([r]2 + 17, ]e“‘ + [772 77,] ) and
B = imag([T]2 + 1, ]e“‘r + [772 -1, ]e‘“‘r).
Substituting these four terms into equation D21 and D22 give:
277 ETnt (T)
ET = 2 d D22
(B, + jB,)cos B,T + jsin B, T(A, + jA,) o (b2
HTar (T)
HT : (D22b)

(A + JA, )cosﬁ,T+Js1n[3l T(B, + jB,)
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Collecting the real and imaginary terms in the denominator.
2 7]2 ETor (T)

E" =
B, cos B,T — A, sin B,T) + jlA sinfB.T + B, cos 3,1
i R 1 i

and (D22c)

zanTot (T)

H =
A, cosB,T - B, sin B,T)+ j(B,sin BT + A, cos B,1 '
R i i 1

(D22d)

Clearing the denominators of imaginary terms:

2172ET"‘(T)[ (B, cos B,T — A, sin B,T) - j(A, sinB,T + B, cos B,T)|
(B, cos B,T — A, sin f3, ) + (A, sin B,T + B, cos 3, )

and (D22¢)

HT‘” (T)[(A cos B,T — B, sin B,T) — j(B, sin B,T + A, cos B, )]
(A, cos B,T — B,sin B,T)" + (B, sin B,T + A, cos f, T)’

T

(D22f)

These two equations (D22e and D22f) define the electric and magnetic field terms for the RF wave trans-
mitted into media 2 in terms of the wave entering media 1 at the boundary between media 1 and media 3.

The conjugate of the magnetic field portion of the wave is taken from equation (D22f):

2[7]1] [H™ ()] [(A, cos B,T - B, sin §, T)+ j(B,sin B,T + A, cos B, T)]
(A, cos B,T - B,sin B,T)" +(B, sin B,T + A, cos j, T)’

. (D22g)

[H7] =

Since the instantaneous power of a wave composed of complex phasors is determined by the product of the
electric field and the conjugate of the magnetic field portions of the wave, then the instantaneous power per
unit area entering media 2 is given by the product of equations (D22e) and (D22g) giving:

. 4112[11 ] ET"'(T)[HTOI(T)] [(Brcos B,T - A;sin BiT) ~ j(Agsin BT + B, CO\BIT)][(AR cos B,T - B;sin B,T) + j(Bgsin BT + A, cos T
5= {(B cos BT — A;sin BT ) +(Agsin BT + B,cos ;T) }{(ARco BT - BsmBlT) +(Bgsin BT + A cos BT )} .
Which simplifies to:

o ={ any[m ] [ AgBy + AB,) + i{(ArB; — ABg)(1- 2005 BT — (45" + A — Be® - Biz)(cosﬁ,Tsinﬁ,T)}]
{

BgrcosB,T — A, sinB,T)* +(AgsinB,T + B, cosﬂlT)z}{(AR ccsB,T — B;sinB,T)* + (BgsinBiT + A, cosﬁlT)z}

T
l .

(D23)
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where the term SIT =E™ () g (T)]* is the instantaneous complex power entering media 1 at its boundary
with media 3. Remember the average power would be one half the real part of equation (D23). The
equation (D23) provides a means of determining the transmittance through a series of media layers and
boundaries. Equation (D23) can be successively applied to each media (starting at the first incident bound-
ary) to find the transmittance into the final media. This will be shown in Section D.5.2 for the acoustic
blanket.

D.5 APPLICATION TO THE ACOUSTIC BLANKET INSTALLATION

The application of equations (D17,) (D21,) (D22,) and (D23) to the acoustic blanket installation in the
Delta fairing will be described here. The process necessary to arrive at a solution for the effective imped-
ance and the transmittance will also be described. The blanket analyzed here is one of several possible
configurations. The blanket is similiar to a large pillow, having a conductive cover filled with none conduc-
tive batting. Figure D-1 illustrates the configuration analyze.

D.5.1 IMPEDANCE OF THE BLANKET-COVERED WALL

This section will describe the application of the equation (D17) to the acoustic blanket installation illus-
trated in Figure D-1. The inner fairing wall surface is the starting point and each layer of material is
considered in turn.

D.5.1.1 Impedance of the Fairing Wall

The wall material is aluminum. Its RF characteristics (impedance, attenuation constant, and phase con-
stant) can be computed from equations defined in Appendix C.

D.5.1.2 Impedance of Blanket Cover 2 and the Fairing Wall

Figure D-5 illustrates the cover and wall to be analyzed. Equation (D17) shows the RF characteristics of
the cover and the wall are required for the computation. Section D.5.1.1 described the computation of the
wall characteristics. Determination of the blanket cover intrinsic RF characteristics is complicated by its
construction. It is made of several thin layers of materials. Some of the layers have carbon particles which
make those layers conductive while other layers are non-conductive. Test data is available, however,
which can be used to compute its RF characteristics. Appendix E provides the equations for the imped-
ance, attenuation constant, and phase constant using the test data values for the complex dielectric constant.

o blanket
E'H ———f cover

E'H —m07—7

.

Figure D-5. RF wave at boundary for cover 2 and fairing wall.
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Using the cover RF characteristics and aluminum wall RF characteristics (from Section D.5.1.1), the im-
pedance at the surface of the blanket cover is given by equation (D17):

nuTe)=

. [(nalum +7c )eaCTC + (T’alum -Nc )e—aCTC]COS ﬂcTC + j[(nall;m +Nc )eaCTC - (nalum2 -Nc )e_aCTC]Sin ﬂcTC .
AT — , — ,
[(nalum +TNc )ea(‘TC - (nalum - Thc)e aCTC]COS BCTC + J[(na;um +71c )eaCTC + (nalum - ﬂc)e aCTC]sm ﬁcTC

(D24)
D.5.1.3 Impedance at Surface of the Batting

Figure D-6 illustrates the next step in the process. The next surface for consideration is the inner surface of
the batting. The batting is fiberglass. Its relative dielectric constant is estimated to be 1.02 and it is
considered lossless. The value of the dielectric constant was determined using:

Densitybatting dielectric

g

glass ) :
The batting’s RF impedance, attenuation, and phase constant are calculated using the equations in Appen-
dix C.

o Batting

EH —

E'H ——

.

Figure D-6. Blanket batting and boundary with equivalent cover/wall material.

The impedance at the surface of the batting is calculated, using equation (D17), with the combined wall/
cover impedance, 7,,, (from Section D.5.1.2 equation (D24)) and the batting RF characteristics giving:

an(Tb) =

. [(Tlu +12)e° + (M~ s )e-o] cos B,Tb+j [(Tlm +1p2)e’ = (M —Mea )e—o] sin 8,75 | . (D25)
" [(nu T2 )eo — (N1 - ﬂLz)e_O] cos B,Tb + [(nu + an)eO +(n - an)e_O] sin B,Tb

D.5.1.4 Impedance at Inner Surface of Blanket Cover

The final step is the impedance at the exposed surface of the blanket. This is illustrated in Figure D-7. The
impedance of the cover was determined is Section D.5.2. ~"he impedance of the batting-cover-wall is from
equation (D24.)
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o cover
E'H —‘H

E'H ¢— ]

—T

Figure D-7. RF waves at boundary with equivalent material for batting, cover sheet and wall.

Therefore the impedance at the exposed surface of the blanket cover is determined, using equation (D17),
by the combined batting/cover/wall impedance (from Section D.5.1.4) and the cover characteristics (from
Section D.5.1.2,) giving:

Mia(Te) =7 [(771,2 +1c)e™ ™ + (N, = 7c )e“’cTC]cos B.Tc+ j[(an +1c)e* ™ —(ny, - nc)e'“ch]sin B.Tc }
wsile)=nc .

[(77L2 + ¢ )eacTC - (nL3 - n1c)e_acTc]C05 B.Tc + j[(TILz +7Nc )"v’aCTC + (771.2 - nc)e—acTc]Sin B.Tc
(D26)

This impedance can now be used to compute the reflection, transmittance, and loss of the blanket-covered
wall.

D.5.2 TRANSMITTANCE THROUGH THE ACOUSTIC BLANKET

Transmittance through the acoustic blanket is of concern because the blanket covers the RF window in the
fairing wall. Adequate signal is needed outside the fairing. Figure D-1 illustrates the problem if the wall is
replaced by air. The calculation of the transmittance through the acoustic blanket starts at the inner cover
1 surface and proceeds one layer at a time through the blanket until reaching the RF window.

D.5.2.1 Power Entering the Blanket

The blanket-wall system impedance (7 13(T,)) resulting from section D.5.1.5 equation (D26) is used in
Appendix B equations (B40) and (B41) to calculate the field entering the blanket’s inner cover surface of
Figure D-7. Using n, for the impedance of air and 7 13(T) as the equevalent impedance of the blanket and
wall system, equations (B40) and (B41) give:

Na+Nr3

D27
HIT) =[—2 )z’. (D27)

Nat0s

Eﬂ(n)=[L]E’ and

The conjugate of the magnetic field is:

» [ 2[na +771,3]J 2k
HI(TH| =| 22— (D27a)
[ 1 ] [IT’A +77le2 [ ] :
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The instantaneous complex power entering the blanket’s inn¢ r cover is the product of the electric field and
the conjugate of the magnetic field giving:

4 E
5 - ( 21,3 ][ 2n, + nu]}[ Te ang e (D27b)
Nat M3 |77A + 77L3‘ ‘77A +nL3‘

D.5.2.2 Transmittance Through the Blanket’s Inner Cover into the Blanket’s Batting Layer

The results of section D.5.2.1 become the field terms for use in equations (D22e), (D22f), and(D23) to
determine the field entering the batting. The electric field entering the batting is:

T (T )_ 2n LZECI( 1)[(BRC1 cos ﬂcl Aj) Sinﬁcchl)— j(ARcl Sinﬁcchl + Bicl cos ﬁcchl)]

] 2 . i V) (D28)
(Bgey cos B T,1 — Ajq sin ﬁcchl) +(Apg sin Bo17 + Bjq cos ﬁcchl)
The magnetic field entering the batting is:
T . , .
T chl H 1(T ) [(ARcl cos )B cchl - Bicl sin B cchl )_ ](BRcl sin ﬁcchl + Aicl cos ﬁ cchl )]
H) (@)= (D29)

3 , , 3
(A gey cos BoiT,) — By sin ByT, 1) +(BRc1 sin B 7 + Ay cO8 ﬁcchl)

The instantaneous complex power entering the batting is:

4'71.2[%1] {(ARCIBRA +AinBa )+ j((AchBccx - AiclBRcl)(l - 2cos’ pcchl) - (Altrlz +An" - Bry® - B.‘clz)(cosﬂcchl sin B, T, ))] 7

. . 2 2 . 2 cl -
{(Ber cos B, T, — A sin cITcl) +(Age sin B, T, + B, cos 1 T) }{(Am cos BT, — By sin By T,,) +(Bg sin By T,y + Ay cos 1T,) }

sI(n)=

(D30)
Where the subscript ‘c1’ designates the blankets inner cover properties, [n,,]" is the conjugate of the cover
impedance, 7, is the instantaneous complex power entering the inner cover sheet, and:

Bgy = red (b L2+ N BT+, - ek ) ,
B, 'imag(['lm +17¢ T “’["Lz—"cl]f_a“T“)’
ARl —rwl(Inu +1 ¢y fpoeile - [nLZ_nd}_ade)’ and
Aiq ='"‘“8(I77L2 +1g1 T = [ -1y T )

D.5.2.3 Transmittance Through the Blanket’s Inner Cover and Baiting into the Blanket’s 2nd Cover Sheet

The results of section D.5.2.2 become the field terms for i se in equations (D22e,) (D22f,) and (D23) to
determine the field entering the second cover sheet. The el¢ ctric field entering the second cover sheet is:

X )_ZnLlEbT(Tb)[(BRbcos BT, - Ay, sin B, T, )~ i(Agy sin B, T, + By cos B, T, )]
c2\e2 /™

2 2
(B, cos BT, — Ay sin BTy ) +(Apy sin By Ty, + By, cos B, T, )

(D31)



The magnetic field entering the second cover sheet is:

. 21 11Hy @) (A gy cos B, T, ~By, sin B, T, )~ j(Bry sin B, T, + Ay cos B, T, )]
HL (T, )=

_ 3 2 (D32)
(ARb cos 8, T, — By, sin ﬂbTb) +(BRb sin B, T, + A, cos ﬁbTb)

The instantaneous complex power entering the second cover sheet is:

4711,1[’71,] [(ARbBRb +A,B, ) +j((ARbBib = Ay By, )(1 -2cos’ BT, ) - (AR,,2 +A4,7 - By’ - B’ )(COS BT, sin ﬁbn))]
{(BRb cos 8,7, — A, sin B, T, )2 +(ARb sin 8,7, + B,, cos leTb)z }{(Akb cos B,T, - B, sin B,T, )2 + (BRCI sin B, T, + A, cos ﬁbTb)z}

(D33)

ScTz(Tcz)z b

Where the subscript ‘b’ designates the blanket’s batting properties, [anis the conjugate of the cover im-

pedance,s] is the instantaneous complex power entering the inner cover sheet, and:

a,T -, TY
Bra =mal([nu 1, P [y -m B )

By = imag([nu +nb]eabrb + [77L1 - le]e—abrb ) ,
Apey = redl ([711,2 +Ng ]‘Z%T‘l ~l2-n4 ]‘f_adT“ ) »and
Ay =imag¢nL1 +nb}abTb _ [nLl _nb]e‘“bTm )

D.5.2.4 Transmittance Through the Blanket and into the Air (Wall)

The results of section D.5.2.3 become the field terms for use in equations (D22e), (D22f), and (D23) to
determine the field entering the air (wall.) The electric field entering the air (wall) is:

T . . .
BT 21, E (T, )[(BRcz 005 B3T3 = Ay sin B o Ty )- (A sin B, T,y + By, cos BT )]

w ] 2 . V) (D34)
(BRCZ cos By Ty — Aip sin B, T, ) + (ARc2 sin 5T,y + By cos B, T,y )
The magnetic field entering the air (wall) is:
T _ 2nc2 HCZ(TCZ ) ARCZ cos ﬂ c2 Tc2 - BicZ sin BCZTCZ )_ ](BRCZ sm B c2 TL‘2 +Aic‘2 cos ﬁcZ TcZ ]
H, = (D35)

7 _ )
(ARc2 cos By T,y — Bigy sin By T,y ) + (BRc2 sinf 2Ty + Ay c0s BTy )

The instantaneous complex power entering the air (wall) is:

4”:1["(;2] [(AszRcz +A0Be)+ j((ARcZBlcl - AirZBRCZ)(l ~2cos” ﬁcznz)“ (Are® + Ay — Broy - By )cos oL,y sin B, T,, ))] r
. 7 - . ]
{(Bncz cos B, T, — A, sin ﬁcznz) + (ARrZ sin B, + B, cos /3._»27;2)2}{(/4&2 cos B,T,; — B, , sin pczzz)z + (BRc2 sin B, T, + Ay, cos B, T, )2} ‘

(D36)

sT =

a

2 .



Where the subscript, ‘c2’, designates the blanket’s second cover properties,[1,]" is the conjugate of the

cover impedance, SCT,_ is the instantaneous complex power er tering the second cover sheet, and:

N
By, = real ([qw+ncz]eacz7;2 +ﬁ-’w_ncz]e_“c27:~2 5

Bi» = imag([nw TMhe2 }adrcz + [r’ w2 ]e'ac27;2 )’
ARCZ = redl qnw T2 }aCZTCZ - [nw —Ne2 ]e_aczrC2 )s and

. a T o T,
) =zmag¢nw +nc‘2}” et —[nw_nc2} e J

D.6 CONCLUSION

Equation (D17) can be used to develop the RF impedance model for the blanket covered walls of the
fairing. Equations (D21) and (D22) can be used to define the field leaving the RF window. The application
of the equations can be implemented easily using numerical values of the various material impedances in
a computer program or spreadsheet. Hopefully this note provides the insight necessary to apply the equa-
tions to any combination of layered materials that might be encountered.
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APPENDIX E

Calculating RF Characteristics of the
Acoustic Blanket Cover Sheets

by
Jerry Reddell
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The acoustic blankets used in the Delta metal fairing are built of two cover sheets and fiberglass batting
material. The cover sheets in turn are built from a thin sheet of fiberglass cloth which has been dipped in
Teflon and carbon loaded Teflon. Test measurements of the RF characteristics of the cover sheets were
performed. The test data on the cover sheets defines the loss tangent and therefore the complex relative
dielectric constant of the sheet. Equations are needed to compute the other sheet parameters from the
complex dielectric constant; this Appendix develops the necessary equations. The equations are applicable
to any material for which the complex dielectric constant is known.

The intrinsic impedance (a complex number) is given by Appendix C equation (C15) as:

2 _ _JoH (E1)

n = )
o+ joE

where: 1 is the intrinsic impedance,
o is the frequency in radians per second,
G is the conductivity in mhos per meter,
i is the permeability in henrys per meter, and
¢ is the permittivity in farads per meter.

Using the denominator and rearranging factors gives:
. . (o]
O+ jWE = JWE [1+7—) (E2)
JOOE
or
. . . O
O+ JWE = JOWE (1—]——). (E3)
wE
The permittivity of the material is a complex number defin:d by:
g =¢g,(€ +je")

and the loss tangent is defined as

tan 5 =—-
Equation (E3) now becomes:

8"
G+ jOE, = jOEE (1 - j;]. ®4)

Then comparison of equations (E3) and (E4) shows equivalent terms:

(ES)
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Solving equation (ES) for conductivity gives:
O = WEHE".

Inserting equation (5) into equation (1) gives:

jou

. , . £n
JWEYE (1 —J —')
£

=

Multiplying equation (7) by

o (9 L
= o v I

Which reduces to:

n, =|nlcos &)= [Cos0*1 _ fz[ 1+(§)2+1]
" (2) \/T 2[1+( )] .

and the imaginary part is given by:

= Sin(g)___ Cos@—1 _
i 2 >

(E6)

(E7)

(E8)

(E9)

(E10)

(E11)



To derive the attenuation and phase constant, we use the propagation constant relationship defined by
equation (C16) of Appendix C:

y=a+jB = joulo + joe ). (E12)

Where:  yis the propagation constant of the material,
o is the attenuation constant of the material, and
B is the phase shift constant of the material.

But using equation (E4) in equation (E12) gives:

Y= \/ jwu{jweos' (1 - 1-86—)} = w\/ ~HEQE (1 - %) and

(E13)
7= o\-seale 16 = ol (€ + () |co.
Where:
o= E—ltan“(g—") (E14)
2 2 £

and therefore:

cosf = sin(l tan_’(
2

sinf = cos(l tan_l(-e—)}
2 £
(A] cosA +1
cos| — | = , and
2 2
. (A) cosA -1
sin| — [= / .
2 2

o |
N—
\‘__/

Then:

f_':)j ) cos(tan—l(z_:')] +1 ) \ﬁ+ (%“)2 -1 " E15)
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JH(;;T “
£ . (E16)

6 = cosl Ltan[€)) =+
sing cos(ztem (en \ 2 \le*\jH[%T

The attenuation constant is the real part of the wave impedance, thus:

=|y|cos6 = w\/uso () +(e) [Si”('zl* tan %ﬂ

giving
—_—

-
e (2o B
\

The phase constant is the imaginary part of the wave impedance, thus:

B=|y|sin@ = co\/uem} )2 +(e")? [cos(%tan—l -Z_J]

resulting in

£

=wJ“£20""[ 1+(i—:')2 +1] (E18)

Equations (E6), (E10), (E11), (E17), and (E18) provide the necessary RF characteristics for the cover sheet
from the measured complex dielectric constant.
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